@)

e

a

A - gl L LRIMH AX

Y ACIL

P +a v

B L et i T reA T 9

RS A TR N

A

AL v IV S . | e ey

Database
performance

State of the Art Report

i
i

Published by Pergamon Infotech Limited,
Maidenhead, Berkshire, England.

Printed by A Wheaton & Company Limited,
Exeter, Devonshire, England.

UDC 681.3
Dewey 658.505
ISBN 0080285899

© Pergamon Infotech Limited, 1984

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means,
electronic, mechanical, photographic, or
otherwise, without the prior permission of the
copyright owner.

It should be noted that the copyright for the
Report as a whole belongs to Pergamon Infotech
Ltd. The copyright for individual contributions
belongs to the authors themselves.

v

Database
performance

Foreword

The widespread acceptance of the database approach to meeting the data needs of large and small
information systems has in many cases been in spite of poor responsiveness or throughput or in spite of
the considerable cost of acceptable performance in terms of primary and secondary storage, processing
power and cycles, and other system resources. It is of course quite acceptable, for pragmatic reasons, to
require that the approach should work for particular applications, and that it should be powerful,
convenient and flexible, before examining associated performance issues in detail. Furthermore, in a
sharing system, it is often possible to tolerate the poor performance of some secondary or non-urgent
tasks provided that a few primary or critical tasks are efficiently served. However, the natural companion
to such a qualified acceptance is a general expectation on the part of the users that performance problems
will become less acute and at some time may even disappear altogether. The reasons given for this hope
include the following:

e Improvements in the high-level, application-oriented design of databases

Better software packages for databases

Improvements in physical storage techniques and structures

Better mappings between various components of the database system

Innovations in hardware

The development of a number of techniques specifically aimed at improvement of the performance/
cost ratios, ie query optimisation and concurrency control.

Significant progress has been made in these areas in recent years and it is important for users,
manufacturers, researchers and system designers to be aware of these achievements if they are to exploit
the full potential of the database approach. Yet database performance as a subject has rarely had a
comprehensive, unified and detailed treatment in the literature. This is probably due to the fact that the
body of the knowledge which can be associated with the subject is immense in scope and often the detail
in this treasury is of such interest per se, or has such interesting primary applications, that the presenters
omit to put their concepts into the perspective of the performance of the system as a whole. What is
required in such a treatment is an examination of a database system, at its highest level, as a unified
system for providing a buffer or store between the supplier of data and its users, and of those components
of the system which affect overall performance most. Only in this way will a true perspective be kept as
advances are assessed.

During the lifetime of a database system, several distinct phases can be identified, each having its own
causes of poor performance and each requiring appropriate techniques for enhancing performance. This,
therefore, provides a second requirement in a comprehensive study of database performance — the need
to distinguish between the design, development and operational stages of the system.

The phase which will have the highest impact on the system’s performance is the design phase. The design
process can be broken down into several subprocesses or layers, each being associated with different
questions, decisions and parameter evaluations affecting performance. Such a layered model enhances
understanding and control of the design process. Even in the early design layers, which include such

vii

activities as data modelling and the mapping of a conceptual model to a chosen DBMS, decisions which
will affect the ultimate performance of the system are unavoidable. A very critical aspect of high-level
design is the accurate capture of the users’ requirements in terms of ~ow well a function is to be carried
out, stated in terms of the responsiveness, utilisation or throughput performance indices, as well as the
data attributes involved. At a lower design level, the physical data structures are chosen, data grouping or
clustering methods are selected and the data attributes to be used for indexing are selected. The supply of
alternatives for these and other choices have attracted much attention from researchers and imple-
mentors; corresponding progress can be reported for these and other system features affecting
performance (ie data compression facilities, concurrency control algorithms and buffer management
methods).

During the operational phase of a database system’s lifetime, it may be necessary to reorganise or
restructure the database due to degraded or otherwise inadequate performance. The system components
providing efficient query evaluation, especially for ad hoc queries, also really come into play during this
phase, although there is clearly a good case for dealing with these components along with others such as
the compression, scheduling and buffering methods.

In the practical running of performance evaluation studies, opportunities are presented for exploiting
some of the experimental and proprietary aids available for the modelling and measurement of
performance. There is a considerable challenge in the management of such projects, both in the choice of
appropriate tools and methods and in general project planning and control.

With the designers of database machines claiming to have developed attractive alternatives to software
implementations of some system components, and the challenges of deyeloping distributed databases
(some on very small computers) and large knowledge bases with acceptable performance, it is clear that
database performance will remain an exceedingly interesting subject.

oA herq

D A Bell: Editor

viii

Publisher’s note

This Report is divided into three parts:

1 Invited Papers.
2 Analysis.
3 Bibliography.

The Invited Papers in this State of the Art Report examine various aspects of database performance. If a
paper cites references they are given at the end of the Invited Papers section, numbered in the range 1-99
but prefixed with the first three letters of the Invited Paper author’s name.

The Analysis has the following functions:

1 Assesses the major advances in database performance.
2 Provides a balanced analysis of the state of the art of database performance.

The Analysis is constructed by the editor of the Report to provide a balanced and comprehensive view of
the latest developments in database performance. The editor’s personal analysis of the subject is
supplemented by quotations from the Invited Papers and current literature, written by leading authorities
on the subject.

The following editorial conventions are used throughout the Analysis:
1 Material in Times Roman (this typeface) is written by the editor.

2 Material in Times Italic (this typeface) is contributed by the person or publication whose name
precedes it. The contributor’s name is set in Times Italic. Numbers in parentheses in the ranges 100-232
or 001-099 following the name refer to the original source as specified in the Analysis references or the
Bibliography, respectively, which both follow the Analysis. References within the text are numbered
in the same way. A contributor’s name without a reference refers to an Invited Paper published in this
Report.

3 The quotations in the Analysis are arranged at the discretion of the editor to bring out key issues.
Three or four dots within a single quotation indicate that a portion of the original text has been
removed by the editor to improve clarity.

The Bibliography is a specially selected compilation of the most important published material on the
subject of database performance. Each key item in the literature is reviewed and annotated to assist in
selecting the required information.

X

Contents

TRy

7

e BRI TN

S pR S T
Sphy w@m&ﬁ;; “

i

Invited Papers

nvited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers I
vited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invif
ed Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited
Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited P3
pers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papd
rs Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Paper

In

vited Pap

ed Papers In
Papers Invited

pers Invited P

s Invited Pap

Invited Papery

vited Papers I

ed Papers Invi

Papers Invited

pers Invited P

rs Invited Pap

Invited Papers

vited Papers I

ed Papers Invi

Papers Invited

pers Invited P

rs Invited Pap

[nvited Papers

vited Papers I

ed Papers Invi

Papers Invited

pers Invited P4

ited Papers Invite
ited Papers Invited Papy
d Papers Invited Papers |}
Papers Invited Papers Inyv
hpers Invited Papers Invitg
brs Invited Papers Invited
Invited Papers Invited Pa
vited Papers Invited Pape

ed Papers Invited Papers I

Papers Invited Papers Inv|

ppers Invited Papers Invitg

rs Invited Papers Invited |

Invited Papers Invited Pa

vited Papers Invited Pape

d Papers Invited Papers I

apers Invited Papers Inv

ipers Invited Papers Invite

rs Invited Papers Invited |

Invited Papers Invited Pa

vited Papers Invited Pape

ed Papers Invited Papers I

Papers Invited Papers Inv

rs Invited Pap pers Invited Papers Invitg fited Papers Invited Papers Invited Papers|
s Invited Papers Invited \i Papers Invited Papers Invited Papers In|

‘vited Papers Invited P, \pers Invited Papers Invited Papers Invit

aners Iny ayited Papers Invited Papers Invited]

— I—— ers Invited Papers Invited Pal

vited Papers Iny
apers Invit
ﬁers Invited Paper™\
Is Invited Papers Invitd\
hvited Papers Invited Pa,
ited Papers Invited Pape
d Papers Invited Papers I
Papers Invited Papers Invi
pers Invited Papers Invitej
s Invited Papers Invited
nvited Papers Invited P/
ited Papers Invited B/

d Papers Invited p”
ed Papers Invited

Invited Papers Invited Papers Invited P
nvited Papers Invited Papers Invited Pap
ited Papers Invited Papers Invited Papers
d Papers Invited Papers Invited Papers In
Papers Invited Papers Invited Papers Invit

ers Invited Papers Invited Papers Invited|

Invited Papers Invited Papers Invited P
hvited Papers Invited Papers Invited Pap

bers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Pape
s Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers|
[nvited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers In|
vited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invit
ed Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited
Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Papers Invited Pa]

LR, FELARPDFIGE L www. ertongbook. com

1: Query optimisation in
relational database
systems

S Ceri

Milan Polytechnic
Milan
Italy

This paper reviews some of the query
optimisation methods in relational data-
base systems: the goals and importance
of query optimisation are discussed, and
the basic models and techniques for query
optimisation which apply both to central-
ised and distributed systems are reviewed.
An important but very simple optimisation
consists in applying selections and projec-
tions as early as possible; thus, the most
difficult problems of query optimisation
are due to the execution of joins. Query
processing methods for centralised data-
bases are exemplified by two very different
approaches; the query decomposition
method of Ingres, and the query optimis-
ation approach of System R; and for dis-
tributed databases: the use of semi-join
reduction, and the query optimisation
approach of System R.

© S Ceri 1984

3

S Ceri

Professor Ceri received his
doctorate degree in electrical
engineering from the Polit-
ecnico di Milano, Italy, in 1978.
At present he is Research
Associate at the Electrical
Engineering Department of the Politecnico
di Milano. He performs research in database
management, primarily in distributed databases,
database design and the use of relational data-
bases for the development of software systems. His
principal activity for the past five years has been
in distributed databases, where he has studied the
correctness, optimisation and synchronisation of
distributed transactions, and the design of the
distribution of database schemata. He is co-author
of the book: ‘Distributed databases: principles
and systems’, published by McGraw-Hill in 1984,
and he is author of over 30 papers published in
journals and conference proceedings. During 1983
and 1984, he has been visiting professor at
Stanford University.

4

Query optimisation in relational
database systems

Introduction

The relational model and languages have been developed with the goal of allowing an easy interaction
with the users. The relational model of data incorporates all its semantics directly in relations, which are
viewed by the user simply as tables with rows and columns. Relational languages are non-procedural, ie
they do not require the specification of a procedure for collecting the result of a query. but they simply
require definition of the logical properties of the result. The optimisers are software modules which
assume as input an internal representation of the query, produced by the parsers, and perform the
complex task of selecting an access strategy to the data. Thus, optimisers substitute for some of the
functions of application programmers; the performance of systems is heavily influenced by the
performance of optimisers.

In general, the same query can be executed in many different ways; this is due to the following two facts:

1 Equivalence transformations can transform a given user query into several other queries which
produce the same result.

2 The operations of a query can be mapped to the internal structures of a database in many different
ways; for instance, a join operation between two relations can be executed using several different
methods.

An optimiser must perform both query transformation and operations mapping in order to produce an
access strategy. However, it is relevant to distinguish the above two steps in query optimisation.

The first step corresponds to a ‘logical’ transformation of the query: thus, it can be studied independently
on the different internal structures which constitute the storage system of a relational database.

Moreover, many transformations are always beneficial. and thus they need not be evaluated on a cost
basis.

The second step requires instead the quantitative evaluation of alternatives, which is done on the basis of
their estimated performance. This step requires the use of an ‘operations research’ approach. Since the
query optimisation problem has a complexity which is combinatorial with the number of its decision
variables, algorithms used in the second step are typically heuristic and do not make an exhaustive search
of the possible solutions: therefore, the result of an optimiser is not the optimal solution, but is
nevertheless a good solution.

In the evaluation of the efficiency of an optimiser it is necessary to compare the features of the solution
produced by it with the amount of time required for computing the solution. In certain cases, an optimiser
which is capable of producing the optimal solution via a long computation does not perform so well as an
optimiser which finds only a good solution quickly. This consideration applies to the case of on-line

5

queries, while it is not necessarily true for precompiled queries, ie queries embedded into appli-
cation programs. In the latter case, a long computation performed by the optimiser could be compensated
by the increase in the performance of queries, since they will be executed several times. Thus,
the most sophisticated optimisers should behave differently with interactive queries and with precompiled
queries.

Query optimisation can be aimed at two different goals: either the minimisation of the delay between the
issuing of a query and the production of an answer, or the minimisation of the cost associated with a query
execution strategy. The two approaches lead to the production of access strategies with different features.

The first approach leads to the use of parallelism: if possible, queries are decomposed into independent
subqueries which can be processed in parallel. Subqueries are divided into two classes: critical and
non-critical. The subqueries which are processed in parallel with other subqueries, but require a shorter
time than the others, are not considered ‘critical’. The value of the goal function for a given execution
strategy is just the summation of times of the critical subqueries.

In an on-line query, it might be relevant to consider the delay between the issuing of the query and the
production of the first row (or screen) of the result. In fact, this is the time in which the user remains
‘idle’; but once the first row is produced at the terminal the user will probably read the result more slowly
than the system computes the remaining rows or screens.

The second approach does not emphasise parallelism, and aims at the minimisation of the use of
resources. In this case, the value of the goal function associated with a given execution strategy is the
weighted sum of resource utilisation.

The use of a mixed approach is possible. In fact, when one of the two approaches is used, say delay
minimisation, it is convenient to select from the strategies with the same delay the one with the minimum
cost or vice versa.

In a centralised system, the critical resources for a query execution strategy are the CPU utilisation
and the number of I/O operations. Though CPU utilisation can be important for certain operations
(eg sorts), the critical factor for most systems is the number of I/O operations. Thus, access methods
(such as hash tables, links and indices) are developed for reducing the number of I/O operations required
for accessing a relational database. Moreover, special database machines are developed for the same
purpose.

In a distributed database, a critical resource is data and message transmission on the computer network.
Data transmission is required to move portions of the database in order to collect the result at the user’s
site. Message transmission is required in order to control the execution of queries. With large databases,
message transmission is much less expensive and time consuming than data transmission, and thus it is not
considered by the optimisers. In geographically distributed networks, data transmission is typically the
most critical factor with respect to CPU and 1/O utilisation since transmission is slower than that of an I/O

channel by three orders of magnitude. In a local network the I/O and transmission speeds are
comparable.

In order to understand the importance of query optimisation, let us consider a simple query which
requires the join of two relations, R and S, and the selection of one of them, say R. Let us assume that
initially R and S have 1000 rows each, that the join has a factor 10 with respect to R (ie 10 rows are
produced in the result of the join for each row of R), and that the selection has a selectivity of 0.01 (ie one
row is selected out of 100 rows of R).

The ‘logical’ optimisation consists in the evaluation of the selection before the join. In this way, R is
initially reduced to 10 rows, which are later joined with S, producing 100 rows of the result. If, instead,
the operations were performed in the opposite order, a temporary result of 10 000 tuples would be
generated by the join operation; then, the selection would be applied to this temporary result, producing
the same 100 rows of the first solution. In terms of resource utilisation, the first solution uses less CPU
time because smaller relations are manipulated and the I/O operations are saved for storing and retrieving
the temporary result. In a distributed system, assuming that R and S are stored at different sites and that

R is sent to S in the final execution strategy, the first solution requires the transmission of 10 rows instead
of 1000 rows.

6

Ceri

Next, the optimiser must select a method for performing the selection and join. In the evaluation of the
selection, the optimiser must determine which access methods can take advantage of the selection
condition, and use the best method. In the example, let us assume that there exists an index which
allows the direct accessing of the 10 rows selected by the condition; then the optimiser should select
this index. Finally, a join method should be selected by the optimiser in order to produce the final
result.

Basic techniques in query optimisation

In this section, the basis for query optimisation is developed. It is assumed that the reader is familiar
with the relational model and algebra presented in, for instance (CERI, CER2, CER3). Here, the
notation of (CER3) is used; therefore:

1 REL(ATTR1,ATTR2,..ATTRn) indicates the relation schema of the relation REL, having ATTR1,
ATTR2,... ATTRn as attributes. Upper case letters are used for relations and attribute names; lower
case letters indicate tuples (eg ¢ is a tuple of REL). The value assumed by the attribute ATTR of the
tuple ¢ is denoted by ATTR(¢].

2 The following operations of relational algebra are used in this paper:
SLconditionR indicates a selection of the relation R

PJattribute list R indicates a projection of R

R CP S indicates the Cartesian product of R and S

R UN S indicates the union of R and S

R JNjoin condition S indicates the join of R and S.

Query languages are more powerful than relational algebra; they express some features which have no
counterpart in algebra, such as aggregate functions, ordering of tuples within relations, grouping of
tuples having common values, etc. However, the class of queries considered in this paper, called
select-project-join queries, can be formulated as relational algebra expressions involving just selections,
projections and joins. These queries cover a large and relevant subset of all possible queries and are
mostly studied in the literature of query optimisation.

Consider the following relation schemata:

EMP(NAME, DNO, SAL, SOCSECNO, SKILL)
DEPT(DNO, LOCATION, MANAGER, ADDRESS)

The following example is a select-project-join query:

PJnAME,MGR SLLoC='LONDON' AND SAL < 35.000 (EMP JNpno=pno DEPT)

The meaning of this example query in English is: ‘Select the employees and the managers of their
departments such that departments are located in London and employees earn less than £35 000’. The
example query can be formulated in several relational languages; its formulations in SQL (CER4),
Query-By-Example (CER5) and QUEL (CER6) are shown in Figure 1. Assuming relational algebra
for writing queries instead of any one of the relational languages above has the advantage of allowing a
general treatment of query optimisation; in fact, each system is capable of parsing the query and
producing an internal form of it which is roughly equivalent to its expression in algebra.

A structural representation of an expression of relational algebra is given by operator trees. Operator
trees are totally equivalent to relational algebra expressions; however, their structure indicates more
clearly the order of applications of operations. Figure 2a shows the operator tree of the example query.
The ‘leaves’ represent the relations appearing in the expression; the ‘root’ represents the result of the
expression. The operator tree in Figure 2a indicates that the join operation is applied first, followed by
the selection, followed by the projection.

Expressions of relational algebra can be transformed using equivalence transformations, ie transform-
ations which produce other expressions with the same meaning. Equivalence transformations are

7

SELECT NAME, MGR
FROM EMP, DEPT
WHERE EMP. DNO =DEPT. DNO

AND LOC =‘LONDON’
AND SAL<35.000
a)
EMP NAME DNO SAL SOCSECNO SKILL
P.JONES D1 <35.000
DEPT DNO LOCATION MANAGER ADDRESS
D1 LONDON P.SMITH
b)
Range of E is EMP
Range of D is DEPT
Retrieve into RESULT (NAME =E.NAME, MGR =D.MGR)
Where E.DNO =D.DNO
and E.SAL<35.000
and D.LOC = ‘LONDON’
c)

Figure la: Example query in SQL
Figure 1b: Example query in QBE

Figure Ic: Example query in QUEL
Figure 1: Example query

