Naoki Kobayashi (Ed.)

Programming
Languages
and Systems

4th Asian Symposium, APLAS 2006
Sydney, Australia, November 2006
Proceedings

LNCS 4279

@ Springer

Naoki Kobayashi (Ed.)

Programming
LLanguages
and Systems

4th Asian Symposium, APLAS 2006
Sydney, Australia, November 8-10, 2006
Proceedings

@ Springer

Volume Editor

Naoki Kobayashi

Tohoku University, Graduate School of Information Sciences
Department of Computer and Mathematical Sciences

6-3-9 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi 980-8579, Japan
E-mail: koba@ecei.tohoku.ac.jp

Library of Congress Control Number: 2006935552

CR Subject Classification (1998): D.3, D.2, F3, D.4, D.1, F4.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-48937-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48937-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11924661 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4279

Lecture Notes in Computer Science

For information about Vols. 1-4200

please contact your bookseller or Springer

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XII, 474 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC. XV, 371
pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I1. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems: OTM 2006
Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I1. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.

Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-

dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Vol. 4271: E.V. Fomin (Ed.), Graph-Theoretic Concepts
in Computer Science. XIII, 358 pages. 2006.

Vol. 4270: H. Zha, Z. Pan, H. Thwaites, A.C. Addison,
M. Forte (Eds.), Interactive Technologies and Sociotech-
nical Systems. XVI, 547 pages. 2006.

Vol. 4269: R. State, S. van der Meer, D. O’Sullivan, T.

Pfeifer (Eds.), Large Scale Management of Distributed
Systems. XIII, 282 pages. 2006.

Vol. 4268: G. Parr, D. Malone, M. O Foghli (Eds.), Au-
tonomic Principles of IP Operations and Management.
XIII, 237 pages. 2006.

Vol. 4267: A. Helmy, B. Jennings, L. Murphy, T. Pfeifer
(Eds.), Autonomic Management of Mobile Multimedia
Services. XIII, 257 pages. 2006.

Vol. 4266: H. Yoshiura, K. Sakurai, K. Rannenberg, Y.

Murayama, S. Kawamura (Eds.), Advances in Informa-
tion and Computer Security. XIII, 438 pages. 2006.

Vol. 4265: N. Lavra¢, L. Todorovski, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006. (Sublibrary
LNAI).

Vol. 4264: J.L. Balcazar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.
(Sublibrary LNAI).

Vol. 4263: A. Levi, E. Savas, H. Yenigiin, S. Balcisoy,
Y. Saygin (Eds.), Computer and Information Sciences —
ISCIS 2006. XXIII, 1084 pages. 2006.

Vol. 4261: Y. Zhuang, S.-Q. Yang, Y. Rui, Q. He (Eds.),
Advance in Multimedia Information Processing - PCM
2006. XXII, 1040 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006. (Sublibrary LNAI).

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4256: L. Feng, G. Wang, C. Zeng, R. Huang (Eds.),
Web Information Systems — WISE 2006 Workshops.
X1V, 320 pages. 2006.

Vol. 4255: K. Aberer, Z. Peng, E.A. Rundensteiner, Y.
Zhang, X. Li (Eds.), Web Information Systems — WISE
2006. X1V, 563 pages. 2006.

Vol. 4254: T. Grust, H. Hopfner, A. Illarramendi, S.
Jablonski, M. Mesiti, S. Miiller, P.-L. Patranjan, K.-
U. Sattler, M. Spiliopoulou (Eds.), Current Trends in
Database Technology — EDBT 2006. XXXI, 932 pages.
2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part III. XXXII, 1301 pages. 2006. (Subli-
brary LNAI).

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. XXXIII, 1335 pages. 2006. (Subli-
brary LNAI).

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part . LXVI, 1297 pages. 2006. (Sublibrary
LNAI).

Vol. 4249: L. Goubin, M. Matsui (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2006. XII,
462 pages. 2006.

Vol. 4248: S. Staab, V. Svéatek (Eds.), Engineering
Knowledge in the Age of the Semantic Web. XIV, 400
pages. 2006. (Sublibrary LNAI).

Vol. 4247: T.-D. Wang, X. Li, S.-H. Chen, X. Wang,
H. Abbass, H. Iba, G. Chen, X. Yao (Eds.), Simulated
Evolution and Learning. XXI, 940 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
X111, 588 pages. 2006. (Sublibrary LNAI).

Vol. 4245: A. Kuba, L.G. Nyiil, K. Palagyi (Eds.), Dis-
crete Geometry for Computer Imagery. XIII, 688 pages.
2006.

Vol. 4244: S. Spaccapietra (Ed.), Journal on Data Se-
mantics VII. XI, 267 pages. 2006.

Vol. 4243: T. Yakhno, E.J. Neuhold (Eds.), Advances in
Information Systems. XIII, 420 pages. 2006.

Vol. 4241: R.R. Beichel, M. Sonka (Eds.), Computer Vi-
sion Approaches to Medical Image Analysis. XI, 262
pages. 2006.

Vol. 4239: H.Y. Youn, M. Kim, H. Morikawa (Eds.),
Ubiquitous Computing Systems. XVI, 548 pages. 2006.

) Vol. 4238: Y.-T. Kim, M. Takano (Eds.), Management of
Convergence Networks and Services. XVIII, 605 pages.
2006.

Vol. 4237: H. Leitold, E. Markatos (Eds.), Communica-
tions and Multimedia Security. XII, 253 pages. 2006.

Vol. 4236: L. Breveglieri, I. Koren, D. Naccache, J.-P.
Seifert (Eds.), Fault Diagnosis and Tolerance in Cryp-
tography. XIII, 253 pages. 2006.

Vol. 4234: 1. King, J. Wang, L. Chan, D. Wang (Eds.),

Neural Information Processing, Part III. XXII, 1227
pages. 2006.

Vol. 4233: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part II. XXII, 1203
pages. 2006.

Vol. 4232: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part I. XLVI, 1153
pages. 2006.

Vol.4231:J. F. Roddick, R. Benjamins, S. Si-Said Cherfi,
R. Chiang, C. Claramunt, R. Elmasri, F. Grandi, H. Han,
M. Hepp, M. Hepp, M. Lytras, V.B. Misi¢, G. Poels,
L-Y. Song, J. Trujillo, C. Vangenot (Eds.), Advances in
Conceptual Modeling - Theory and Practice. XXII, 456
pages. 2006.

Vol. 4229: E. Najm, J.E. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4228: D.E. Lightfoot, C.A. Szyperski (Eds.), Mod-
ular Programming Languages. X, 415 pages. 2006.
Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative

Approaches for Learning and Knowledge Sharing. XVII,
721 pages. 2006.

Vol. 4226: R.T. Mittermeir (Ed.), Informatics Education
— The Bridge between Using and Understanding Com-
puters. XVII, 319 pages. 2006.

Vol. 4225: J.F. Martinez-Trinidad, J.A. Carrasco Ochoa,
J. Kittler (Eds.), Progress in Pattern Recognition, Image
Analysis and Applications. XIX, 995 pages. 2006.

Vol. 4224: E. Corchado, H. Yin, V. Botti, C. Fyfe (Eds.),
Intelligent Data Engineering and Automated Learning —
IDEAL 2006. XXVII, 1447 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006. (Sublibrary LNAI).

Vol. 4222: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu (Eds.),
Advances in Natural Computation, Part II. XLII, 998
pages. 2006.

Vol. 4221: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu
(Eds.), Advances in Natural Computation, Part I. XLI,
992 pages. 2006.

Vol. 4219: D. Zamboni, C. Kruegel (Eds.), Recent Ad-
vances in Intrusion Detection. XII, 331 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4217: P. Cuenca, L. Orozco-Barbosa (Eds.), Per-
sonal Wireless Communications. XV, 532 pages. 2006.

Vol. 4216: M.R. Berthold, R. Glen, 1. Fischer (Eds.),
Computational Life Sciences I1. XIII, 269 pages. 2006.
(Sublibrary LNBI).

Vol. 4215: D.W. Embley, A. Olivé, S. Ram (Eds.), Con-
ceptual Modeling - ER 2006. X VI, 590 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006. (Sublibrary LNAI).

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006. (Sublibrary LNAI).

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.),
Symbol Grounding and Beyond. VIII, 237 pages. 2006.
(Sublibrary LNALI).

Vol. 4210: C. Priami (Ed.), Computational Methods
in Systems Biology. X, 323 pages. 2006. (Sublibrary
LNBI).

Vol. 4209: F. Crestani, P. Ferragina, M. Sanderson (Eds.),
String Processing and Information Retrieval. XIV, 367
pages. 2006.

Vol. 4208: M. Gerndt, D. Kranzimiiller (Eds.), High Per-
formance Computing and Communications. XXII, 938
pages. 2006.

Vol. 4207: Z. Esik (Ed.), Computer Science Logic. XII,
627 pages. 2006.

Vol. 4206: P. Dourish, A. Friday (Eds.), UbiComp 2006:
Ubiquitous Computing. XIX, 526 pages. 2006.

Vol. 4205: G. Bourque, N. El-Mabrouk (Eds.), Compar-
ative Genomics. X, 231 pages. 2006. (Sublibrary LNBI).

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. X VIII, 774 pages.
2006.

Vol. 4203: F. Esposito, Z.W. Ra$, D. Malerba, G. Semer-
aro (Eds.), Foundations of Intelligent Systems. XVIII,
767 pages. 2006. (Sublibrary LNAI).

Vol. 4202: E. Asarin, P. Bouyer (Eds.), Formal Modeling
and Analysis of Timed Systems. XI, 369 pages. 2006.

Vol. 4201: Y. Sakakibara, S. Kobayashi, K. Sato, T.
Nishino, E. Tomita (Eds.), Grammatical Inference: Al-
gorithms and Applications. XII, 359 pages. 2006. (Sub-
library LNAI).

Preface

This volume contains the proceedings of the 4th Asian Symposium on Program-
ming Languages and Systems (APLAS 2006), which took place in Sydney, Japan,
November 8-10, 2006. The symposium was sponsored by the Asian Association
for Foundation of Software.

In response to the call for papers, 70 full submissions were received. Each
submission was reviewed by at least three Program Committee members with
the help of external reviewers. The Program Committee meeting was conducted
electronically over a 2-week period. After careful discussion, the Program Com-
mittee selected 22 papers. I would like to sincerely thank all the members of the
APLAS 2006 Program Committee for their excellent job, and all the external
reviewers for their invaluable contribution. The submission and review process
was managed using the CyberChair system.

In addition to the 22 contributed papers, the symposium also included two
invited talks by Jens Palsberg (UCLA, Los Angeles, USA) and Peter Stuckey
(University of Melbourne, Melbourne, Australia), and one tutorial by Matthew
Flatt (University of Utah, USA).

Many people helped to promote APLAS as a high-quality forum in Asia to
serve programming language researchers worldwide. Following a series of well-
attended workshops that were held in Singapore (2000), Daejeon (2001), and
Shanghai (2002), the first three formal symposiums were held in Beijing (2003),
Taipei (2004) and Tsukuba (2005).

I am grateful to the General Co-chairs, Manuel Chakravarty and Gabriele
Keller, for their invaluable support and guidance that made our symposium
in Sydney possible. I would like to thank the AAFS Chair Tetsuo Ida and the
Program Chairs of the past APLAS symposiums, Atsushi Ohori, Wei-Ngan Chin,
and Kwangkeun Yi, for their advice. I am also thankful to Eijiro Sumii for serving
as the Poster Chair. Last but not least, I thank Kohei Suenaga for his help in
handling the CyberChair system and other administrative matters.

September 2006 Naoki Kobayashi

Organization

General Co-chairs

Manuel Chakravarty (University of New South Wales, Australia)
Gabriele Keller (University of New South Wales, Australia)

Program Chair

Naoki Kobayashi (Tohoku University)

Program Committee

Kung Chen (National Chengchi University, Taiwan)

Wei-Ngan Chin (National University of Singapore, Singapore)
Patrick Cousot (ENS, France)

Masahito Hasegawa (Kyoto University, Japan)

Jifeng He (United Nations University, Macau)

Haruo Hosoya (University of Tokyo, Japan)

Bo Huang (Intel China Software Center, China)

Oege de Moor (Oxford University, UK)

George Necula (University of California at Berkeley, USA)
Martin Odersky (EPFL, Switzerland)

Tamiya Onodera (IBM Research, Tokyo Research Laboratory, Japan)
Yunheung Paek (Seoul National University, Korea)

Sriram Rajamani (Microsoft Research, India)

Andrei Sabelfeld (Chalmers University of Technology, Sweden)
Zhong Shao (Yale University, USA)

Harald Sondergaard (University of Melbourne, Australia)
Nobuko Yoshida (Imperial College London, UK)

Poster Chair

Eijiro Sumii (Tohoku University)

External Referees

Amal Ahmed Stefan Andrei Benjamin Aziz
Minwook Ahn Puri Arenas Nick Benton
Hugh Anderson Aslan Askarov Martin Berger

VIII Organization

Julien Bertrane
Bruno Blanchet
Frederic Blanqui
Matthias Blume
Hans Boehm
Tovka Boneva
Mihai Budiu
Cristiano Calcagno
Sagar Chaki
Avik Chaudhuri
Siau Cheng Khoo
Shigeru Chiba
Adam Chlipala
Doosan Cho
Jeremy Condit
Florin Craciun
Jason Dai
Cristina David
Xinyu Feng
Jérome Feret
Cédric Fournet
Stephen Freund
Alexey Gotsman
Dan Grossman
Joshua Guttman
Huu Hai Nguyen
Matthew Harren
Aaron Harwood
Martin Hofmann

Kohei Honda

Hans Huttel
Atsushi Igarashi
Kazuhiro Inaba
Seokgyo Jung
Shin-ya Katsumata
Wonseok Kim
Yongjoo Kim
Yue-Sun Kuo
Akash Lal

Peeter Laud
Jooyeon Lee
Benjamin Leperchey
Francesco Logozzo
Youngmo Lyang
Sergio Maffeis
Laurent Mauborgne
Antoine Miné
Yasuhiko Minamide
David Monniaux
Shin-Cheng Mu
Lee Naish

Aleks Nanevski
Aditya Nori
Atsushi Ohori
Sanghyun Park
Andrew Phllips
Henrik Pilegaard
Bernie Pope

Sponsoring Institutions

Asian Association for Foundation of Software (AAFS)

The University of New South Wales

Corneliu Popeea
Shengchao Qin
Xavier Rival
Alejandro Russo
Sriram Sankaranarayanan
Jatin Shah

Alex Simpson

Lex Spoon
Tadahiro Suda
Eijiro Sumii
Yuanhao Sun
Michiaki Tatsubori
Kenjiro Taura
Peter Thiemann
Tayssir Touili
Yoshihito Toyama
Akihiko Tozawa
Daniele Varacca
Manik Varma
Jéroéme Vouillon
Keith Wansbrough
Tony Wirth

Wuu Yang
Jonghee W. Yoon
Poonna Yospanya
Jonghee M. Youn
Zhigiang Yu

Table of Contents

Invited Talk 1

Type Processing by Constraint Reasoning 1
Peter J. Stuckey, Martin Sulzmann, Jeremy Wazny

Session 1

Principal Type Inference for GHC-Style Multi-parameter Type

CLASSEE. + e v oseomoro o im0 56 o m s o6 2 5 s 68 8BTS 6503 80 B 616 08 E 508 6 26

Martin Sulzmann, Tom Schrijvers, Peter J. Stuckey

Private Row Types: Abstracting the Unnamed 44
Jacques Garrigue

Type and Effect System for Multi-staged Exceptions 61
Hyunjun Fo, Ik-Soon Kim, Kwangkeun Yi
Session 2

Relational Reasoning for Recursive Types and References 79
Nina Bohr, Lars Birkedal

Proof Abstraction for Imperative Languages.......................... 97
William L. Harrison

Reading, Writing and Relations: Towards Extensional Semantics

for Effect Analyses ... 114
Nick Benton, Andrew Kennedy, Martin Hofmann,
Lennart Beringer

Session 3

A Fine-Grained Join Point Model for More Reusable Aspects........... 131
Hidehiko Masuhara, Yusuke Endoh, Akinori Yonezawa

Automatic Testing of Higher Order Functions
Pieter Koopman, Rinus Plasmeijer

X Table of Contents

Invited Talk 2

Event Driven Software Qualityoiiuiiiuiiiiiiinn... 165
Jens Palsberg

Session 4

Widening Polyhedra with Landmarks............. 166
Azel Simon, Andy King

Comparing Completeness Properties of Static Analyses and Their
LiOGICS s sws.an 35 85885 MR S B E SR RS h e REE DS EE @055 183
David A. Schmidt

Polymorphism, Subtyping, Whole Program Analysis and Accurate
Data Types in Usage Analysis, 200
Tobias Gedell, Jorgen Gustavsson, Josef Svenningsson

Session 5
A Modal Language for the Safety of Mobile Values 217

Sungwoo Park

An Analysis for Proving Temporal Properties of Biological Systems 234
Roberta Gori, Francesca Levi

Computational Secrecy by Typing for the Pi Calculus 253
Martin Abadi, Ricardo Corin, Cédric Fournet

Invited Tutorial

Scheme with Classes, Mixins, and Traits 270
Matthew Flatt, Robert Bruce Findler, Matthias Felleisen

Session 6

Using Metadata Transformations to Integrate Class Extensions
in an Existing Class Hierarchy 290
Markus Lumpe

Combining Offline and Online Optimizations: Register Allocation
and Method Inlining 307
Hiroshi Yamauchi, Jan Vitek

Table of Contents XI

A Localized Tracing Scheme Applied to Garbage Collection 323
Yannis Chicha, Stephen M. Watt

Session 7

A Pushdown Machine for Recursive XML Processing 340
Keisuke Nakano, Shin-Cheng Mu

XML Validation for Context-Free Grammars 357
Yasuhiko Minamide, Akihiko Tozawa

A Practical String Analyzer by the Widening Approach................ 374
Tae-Hyoung Choi, Oukseh Lee, Hyunha Kim, Kyung-Goo Doh

Session 8

A Bytecode Logic for JML and Typescoviiiniiinaninna... 389
Lennart Beringer, Martin Hofmann

On Jones-Optimal Specializers: A Case Study Using Unmix 406
Johan Gade, Robert Glick

Author Index 423

Type Processing by Constraint Reasoning

Peter J. Stuckey’2, Martin Sulzmann®, and Jeremy Wazny?

I NICTA Victoria Laboratory
2 Department of Computer Science and Software Engineering
University of Melbourne, 3010 Australia
{pjs, jeremyrw}@cs.mu.oz.au
3 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543
sulzmann@comp.nus.edu.sg

Abstract. Herbrand constraint solving or unification has long been un-
derstood as an efficient mechanism for type checking and inference for
programs using Hindley /Milner types. If we step back from the particular
solving mechanisms used for Hindley/Milner types, and understand type
operations in terms of constraints we not only give a basis for handling
Hindley /Milner extensions, but also gain insight into type reasoning even
on pure Hindley/Milner types, particularly for type errors. In this paper
we consider typing problems as constraint problems and show which con-
straint algorithms are required to support various typing questions. We
use a light weight constraint reasoning formalism, Constraint Handling
Rules, to generate suitable algorithms for many popular extensions to
Hindley/Milner types. The algorithms we discuss are all implemented as
part of the freely available Chameleon system.

1 Introduction

Hindley/Milner type checking and inference has long been understood as a pro-
cess of solving Herbrand constraints, but typically the typing problem is not first
mapped to a constraint problem and solved, instead a fixed algorithm, such as
algorithm W using unification, is used to infer and check types. We argue that
understanding a typing problem by first mapping it to a constraint problem gives
us greater insight into the typing in the first place, in particular:

— Type inference corresponds to collecting the type constraints arising from
an expression. An expression has no type if the resulting constraints are
unsatisfiable.

— Type checking corresponds to checking that the declared type, considered
as constraints, smplies (that is has more information than) the inferred type
(constraints collected from the definition).

— Type errors of various classes: ambiguity, subsumption errors; can all be
explained better by reasoning on the type constraints.

Strongly typed languages provide the user with the convenience to significantly
reduce the number of errors in a program. Well-typed programs can be guaranteed
not to “go wrong” [22], with respect to a large number of potential problems.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 1-25, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 P.J. Stuckey, M. Sulzmann, and J. Wazny

Typically type processing of a program either checks that types declared for
each program construct are correct, or, better, infers the types for each program
construct and checks that these inferred types are compatible with any declared
types. If the checks succeed, the program is type correct and cannot “go wrong”.

However, programs are often not well-typed, and therefore must be modified
before they can be accepted. Another important role of the type processor is to
help the author determine why a program has been rejected, what changes need
to be made to the program for it to be type correct.

Traditional type inference algorithms depend on a particular traversal of the
syntax tree. Therefore, inference frequently reports errors at locations which are
far away from the actual source of the problem. The programmer is forced to
tackle the problem of correcting his program unaided. This can be a daunting
task for even experienced programmers; beginners are often left bewildered.

Our thesis is that by mapping the entire typing problem to a set of constraints,
we can use constraint reasoning to (a) concisely and efficiently implement the
type processor and (b) accurately determine where errors may occur, and aid
the programmer in correcting them. The Chameleon [32] system implements this
for rich Hindley/Milner based type languages.

We demonstrate our approach via three examples. Note that throughout the
paper we will adopt Haskell [11] style syntax in examples.

Ezample 1. Consider the following ill-typed program:

f ’a’ b True = error "’a’"
fc True z = error "’b’"
fx y z if z then x else y
fx y z error "last"

Here error is the standard Haskell function with type Va.[Char] — a. GHC
reports:

mdef .hs:4:
Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool
In the definition of ‘f’: f x y z = if z then x else y

What’s confusing here is that GHC combines type information from a number
of clauses in a non-obvious way. In particular, in a more complex program, it
may not be clear at all where the Char and Bool types it complains about come
from. Indeed, it isn’t even obvious where the conflict in the above program is. Is
it complaining about the two branches of the if-then-else (if so, which is Char
and which Bool?), or about z which might be a Char, but as the conditional
must be a Bool?
The Chameleon system reports:!

! The currently available Chameleon system (July 2005) no longer supports these more
detailed error messages, after extensions to other parts of the system. The feature
will be re-enabled in the future. The results are given from an earlier version.

Type Processing by Constraint Reasoning 3

multi.hs:1: ERROR: Type error - one error found
Problem : Definition clauses not unifiable
Types : Char -=> a => b -> ¢

@ -> Bool -> e —> f{|

g ->g->h > i
Conflict: £ ’a’ b True = error "’a’"

c z = error "’b’"
g g = if z fthen) g
Note we do not mention the last definition equation which is irrelevant to the
error.

If we assume the actual error is that the True in the second definition should
be a ’b’ through some copy-and-paste error, then it is clear that the GHC error
message provides little help in discovering it. The Chameleon error certainly
implicates the True in the problem and gives type information that should direct
the programmer to the problem quickly.

As part of the diagnosis the system “colours” both the conflicting types and
certain program locations. A program location which contributes to any of the
reported conflicting types is highlighted in the same style as that type. Locations
which contribute to multiple reported types are highlighted in a combination of
the styles of the types they contribute to. (There are no such locations in the
case above.)

The above example illustrates the fundamental problems with any traditional
Hindley /Milner type inference like algorithms W [22]. The algorithms suffer from
a bias derived from the way they traverse the abstract syntax tree (AST). The
second problem is that being tied to unification, which is only one particular
implementation of a constraint solving algorithm for tree constraints, they do
not treat the problem solely as a constraint satisfaction problem.

The problems of explaining type errors are exacerbated when the type system
becomes more complex. Type classes [34] are an important extension to Hind-
ley /Milner types, allowing principled (non-parametric) overloading. But the ex-
tension introduces new classes of errors and complicates typing questions. Type
classes are predicates over types, and now we have to admit that type processing
is a form of reasoning over first order formulae about types.

Ezample 2. Consider the following program which is typical of the sort of mis-
take that beginners make. The base case sum [] = [] should read sum [] = 0.
The complexity of the reported error is compounded by Haskell’s overloading of
numbers.

sum [] = []

sum (x:Xs) = x + sum Xs

sumLists = sum . map sum

GHC does not report the error in sum until a monomorphic instance is re-
quired, at which point it discovers that no instance of Num [a] exists. This
means that unfortunately such errors may not be found through type checking

4 P.J. Stuckey, M. Sulzmann, and J. Wazny

alone - it may remain undiscovered until someone attempts to run the program.
The function sumLists forces that here, and GHC reports:

sum.hs:4:

No instance for (Num [a]) arising from use of ‘sum’ at sum.hs:3

Possible cause: the monomorphism restriction applied to the following:
sumLists :: [[[a]]] -> [a] (bound at sum.hs:3)

Probable fix: give these definition(s) an explicit type signature

In the first argument of ‘(.)’, namely ‘sum’

In the definition of ‘sumLists’: sumLists = sum . (map sum)

The error message is completely misleading, except for the fact that the prob-
lem is there is no instance of Num [a]. The probable fix will not help.
For this program Chameleon reports the following:

sum.hs:4: ERROR: Missing instance
Instance:Num [a]l: sum [] = []
sum (x:Xs) = X + sum Xxs

This indicates that the demand for this instance arises from the interaction
between [] on the first line of sum and (+) on the second. The actual source of
the error is highlighted.

The advantages of using constraint reasoning extend as the type system becomes
even more complex. Generalized Algebraic Data Types (GADTs) [3,36] are one
of the latest extensions of the concept of algebraic data types. They have at-
tracted a lot of attention recently [24,25,26]. The novelty of GADTs is that the
(result) types of constructor may differ. Thus, we may make use of additional
type equality assumptions while typing the body of a pattern clause.

Ezample 3. Consider the following example of a GADT, using GHC style no-
tation, where List a n represents a list of as of length n. Type constructors Z
and S are used to represent numbers on the level of types.

data Z -- zero
data S n —-- successor
data List a n where
Nil :: List a Z
Cons :: a -> List am -> List a (S m)

We can now express much more complex behaviour of our functions, for example

map :: (a -> b) -> List a n -> List b n
map f Nil = Nil
map f (Cons a 1) = Cons (f a) (map f 1)

which guarantees that the map function returns a list of the same length as its
input.

GADTs introduce more complicated typing problems because different bodies
of the same function can have different types, since they act under different
assumptions. This makes the job of reporting type errors much more difficult.

Type Processing by Constraint Reasoning 5

Ezample 4. Consider defining another GADT to encode addition among our
(type) number representation.

data Sum 1 m n where
Base :: Sum Z n n
Step :: Sum 1 mn -> Sum (S 1) m (S n)

We make use of the Sum type class to refine the type of the append function.
Thus, we can state the desired property that the length of the output list equals
the sum of the length of the two input lists.

append2 :: Sum 1 m n -> List a 1 -> List am -> List an
append2 Base Nil ys = Nil -- wrong!! should be ys
append2 (Step p) (Cons x xs) ys = Cons x (append p xs ys)

For this program GHC reports

append.hs:17:22:
Couldn’t match the rigid variable ‘n’ against ‘Z’
‘n’ is bound by the type signature for ‘append2’
Expected type: List a n
Inferred type: List a Z
In the definition of ‘append2’: append2 Base Nil ys = Nil

For this program Chameleon currently reports:

ERROR: Polymorphic type variable ‘n’ (from line 13, col. 56) instantiated by
append2 :: Sum 1 mn -> List a 1 -> List am -> List an
append2 Base Nil ys = Nil -- wrong!! should be ys

Here we can determine the actual locations that cause the subsumption error to
occur. We could also give information on the assumptions made, though presently
Chameleon does not. We aim in the future to produce something like:

append.hs:10: ERROR: Inferred type does not subsume declared type
Problem: The variable ’m’ makes the declared type too polymorphic
Under the assumptionsll = 4 and h = d arising from
append?2 Eifﬂ Nil ys = Nil
Declared: Sum Z m m -> List a Z -> List am -> List am
Inferred: Sum Z m m -> List a Z -> List a m -> List a Z
append2 Base Nil ys = Nil -- wrong!! should be ys

Our advantage is that we use a constraint-based system where we main-
tain information which constraints arise from which program parts. GHC ef-
fectively performs unification under a mixed prefix, hence, GHC only knows
which ’branch’ failed but not exactly where.

As the examples illustrate, by translating type information to constraints with
locations attached we can use constraint reasoning on the remaining constraint
problem. The constraint reasoning maintains which locations caused any infer-
ences it makes, and we can then use these locations to help report error messages
much more precisely. In this paper we show how to translate complex typing
problems to constraints and reason about the resulting typing problems.

