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Preface

This volume contains the proceedings of the 4th Asian Symposium on Program-
ming Languages and Systems (APLAS 2006), which took place in Sydney, Japan,
November 8-10, 2006. The symposium was sponsored by the Asian Association
for Foundation of Software.

In response to the call for papers, 70 full submissions were received. Each
submission was reviewed by at least three Program Committee members with
the help of external reviewers. The Program Committee meeting was conducted
electronically over a 2-week period. After careful discussion, the Program Com-
mittee selected 22 papers. I would like to sincerely thank all the members of the
APLAS 2006 Program Committee for their excellent job, and all the external
reviewers for their invaluable contribution. The submission and review process
was managed using the CyberChair system.

In addition to the 22 contributed papers, the symposium also included two
invited talks by Jens Palsberg (UCLA, Los Angeles, USA) and Peter Stuckey
(University of Melbourne, Melbourne, Australia), and one tutorial by Matthew
Flatt (University of Utah, USA).

Many people helped to promote APLAS as a high-quality forum in Asia to
serve programming language researchers worldwide. Following a series of well-
attended workshops that were held in Singapore (2000), Daejeon (2001), and
Shanghai (2002), the first three formal symposiums were held in Beijing (2003),
Taipei (2004) and Tsukuba (2005).

I am grateful to the General Co-chairs, Manuel Chakravarty and Gabriele
Keller, for their invaluable support and guidance that made our symposium
in Sydney possible. I would like to thank the AAFS Chair Tetsuo Ida and the
Program Chairs of the past APLAS symposiums, Atsushi Ohori, Wei-Ngan Chin,
and Kwangkeun Yi, for their advice. I am also thankful to Eijiro Sumii for serving
as the Poster Chair. Last but not least, I thank Kohei Suenaga for his help in
handling the CyberChair system and other administrative matters.

September 2006 Naoki Kobayashi
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Type Processing by Constraint Reasoning

Peter J. Stuckey’2, Martin Sulzmann®, and Jeremy Wazny?

I NICTA Victoria Laboratory
2 Department of Computer Science and Software Engineering
University of Melbourne, 3010 Australia
{pjs, jeremyrw}@cs.mu.oz.au
3 School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543
sulzmann@comp.nus.edu.sg

Abstract. Herbrand constraint solving or unification has long been un-
derstood as an efficient mechanism for type checking and inference for
programs using Hindley /Milner types. If we step back from the particular
solving mechanisms used for Hindley/Milner types, and understand type
operations in terms of constraints we not only give a basis for handling
Hindley /Milner extensions, but also gain insight into type reasoning even
on pure Hindley/Milner types, particularly for type errors. In this paper
we consider typing problems as constraint problems and show which con-
straint algorithms are required to support various typing questions. We
use a light weight constraint reasoning formalism, Constraint Handling
Rules, to generate suitable algorithms for many popular extensions to
Hindley/Milner types. The algorithms we discuss are all implemented as
part of the freely available Chameleon system.

1 Introduction

Hindley/Milner type checking and inference has long been understood as a pro-
cess of solving Herbrand constraints, but typically the typing problem is not first
mapped to a constraint problem and solved, instead a fixed algorithm, such as
algorithm W using unification, is used to infer and check types. We argue that
understanding a typing problem by first mapping it to a constraint problem gives
us greater insight into the typing in the first place, in particular:

— Type inference corresponds to collecting the type constraints arising from
an expression. An expression has no type if the resulting constraints are
unsatisfiable.

— Type checking corresponds to checking that the declared type, considered
as constraints, smplies (that is has more information than) the inferred type
(constraints collected from the definition).

— Type errors of various classes: ambiguity, subsumption errors; can all be
explained better by reasoning on the type constraints.

Strongly typed languages provide the user with the convenience to significantly
reduce the number of errors in a program. Well-typed programs can be guaranteed
not to “go wrong” [22], with respect to a large number of potential problems.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 1-25, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 P.J. Stuckey, M. Sulzmann, and J. Wazny

Typically type processing of a program either checks that types declared for
each program construct are correct, or, better, infers the types for each program
construct and checks that these inferred types are compatible with any declared
types. If the checks succeed, the program is type correct and cannot “go wrong”.

However, programs are often not well-typed, and therefore must be modified
before they can be accepted. Another important role of the type processor is to
help the author determine why a program has been rejected, what changes need
to be made to the program for it to be type correct.

Traditional type inference algorithms depend on a particular traversal of the
syntax tree. Therefore, inference frequently reports errors at locations which are
far away from the actual source of the problem. The programmer is forced to
tackle the problem of correcting his program unaided. This can be a daunting
task for even experienced programmers; beginners are often left bewildered.

Our thesis is that by mapping the entire typing problem to a set of constraints,
we can use constraint reasoning to (a) concisely and efficiently implement the
type processor and (b) accurately determine where errors may occur, and aid
the programmer in correcting them. The Chameleon [32] system implements this
for rich Hindley/Milner based type languages.

We demonstrate our approach via three examples. Note that throughout the
paper we will adopt Haskell [11] style syntax in examples.

Ezample 1. Consider the following ill-typed program:

f ’a’ b True = error "’a’"
fc True z = error "’b’"
fx y z if z then x else y
fx y z error "last"

Here error is the standard Haskell function with type Va.[Char] — a. GHC
reports:

mdef .hs:4:
Couldn’t match ‘Char’ against ‘Bool’
Expected type: Char
Inferred type: Bool
In the definition of ‘f’: f x y z = if z then x else y

What’s confusing here is that GHC combines type information from a number
of clauses in a non-obvious way. In particular, in a more complex program, it
may not be clear at all where the Char and Bool types it complains about come
from. Indeed, it isn’t even obvious where the conflict in the above program is. Is
it complaining about the two branches of the if-then-else (if so, which is Char
and which Bool?), or about z which might be a Char, but as the conditional
must be a Bool?
The Chameleon system reports:!

! The currently available Chameleon system (July 2005) no longer supports these more
detailed error messages, after extensions to other parts of the system. The feature
will be re-enabled in the future. The results are given from an earlier version.
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multi.hs:1: ERROR: Type error - one error found
Problem : Definition clauses not unifiable
Types : Char -=> a => b -> ¢

@ -> Bool -> e —> f{|

g ->g->h > i
Conflict: £ ’a’ b True = error "’a’"

c z = error "’b’"
g g = if z fthen) g
Note we do not mention the last definition equation which is irrelevant to the
error.

If we assume the actual error is that the True in the second definition should
be a ’b’ through some copy-and-paste error, then it is clear that the GHC error
message provides little help in discovering it. The Chameleon error certainly
implicates the True in the problem and gives type information that should direct
the programmer to the problem quickly.

As part of the diagnosis the system “colours” both the conflicting types and
certain program locations. A program location which contributes to any of the
reported conflicting types is highlighted in the same style as that type. Locations
which contribute to multiple reported types are highlighted in a combination of
the styles of the types they contribute to. (There are no such locations in the
case above.)

The above example illustrates the fundamental problems with any traditional
Hindley /Milner type inference like algorithms W [22]. The algorithms suffer from
a bias derived from the way they traverse the abstract syntax tree (AST). The
second problem is that being tied to unification, which is only one particular
implementation of a constraint solving algorithm for tree constraints, they do
not treat the problem solely as a constraint satisfaction problem.

The problems of explaining type errors are exacerbated when the type system
becomes more complex. Type classes [34] are an important extension to Hind-
ley /Milner types, allowing principled (non-parametric) overloading. But the ex-
tension introduces new classes of errors and complicates typing questions. Type
classes are predicates over types, and now we have to admit that type processing
is a form of reasoning over first order formulae about types.

Ezample 2. Consider the following program which is typical of the sort of mis-
take that beginners make. The base case sum [] = [] should read sum [] = 0.
The complexity of the reported error is compounded by Haskell’s overloading of
numbers.

sum [] = []

sum (x:Xs) = x + sum Xs

sumLists = sum . map sum

GHC does not report the error in sum until a monomorphic instance is re-
quired, at which point it discovers that no instance of Num [a] exists. This
means that unfortunately such errors may not be found through type checking
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alone - it may remain undiscovered until someone attempts to run the program.
The function sumLists forces that here, and GHC reports:

sum.hs:4:

No instance for (Num [a]) arising from use of ‘sum’ at sum.hs:3

Possible cause: the monomorphism restriction applied to the following:
sumLists :: [[[a]]] -> [a] (bound at sum.hs:3)

Probable fix: give these definition(s) an explicit type signature

In the first argument of ‘(.)’, namely ‘sum’

In the definition of ‘sumLists’: sumLists = sum . (map sum)

The error message is completely misleading, except for the fact that the prob-
lem is there is no instance of Num [a]. The probable fix will not help.
For this program Chameleon reports the following:

sum.hs:4: ERROR: Missing instance
Instance:Num [a]l: sum [] = []
sum (x:Xs) = X + sum Xxs

This indicates that the demand for this instance arises from the interaction
between [] on the first line of sum and (+) on the second. The actual source of
the error is highlighted.

The advantages of using constraint reasoning extend as the type system becomes
even more complex. Generalized Algebraic Data Types (GADTs) [3,36] are one
of the latest extensions of the concept of algebraic data types. They have at-
tracted a lot of attention recently [24,25,26]. The novelty of GADTs is that the
(result) types of constructor may differ. Thus, we may make use of additional
type equality assumptions while typing the body of a pattern clause.

Ezample 3. Consider the following example of a GADT, using GHC style no-
tation, where List a n represents a list of as of length n. Type constructors Z
and S are used to represent numbers on the level of types.

data Z -- zero
data S n —-- successor
data List a n where
Nil :: List a Z
Cons :: a -> List am -> List a (S m)

We can now express much more complex behaviour of our functions, for example

map :: (a -> b) -> List a n -> List b n
map f Nil = Nil
map f (Cons a 1) = Cons (f a) (map f 1)

which guarantees that the map function returns a list of the same length as its
input.

GADTs introduce more complicated typing problems because different bodies
of the same function can have different types, since they act under different
assumptions. This makes the job of reporting type errors much more difficult.
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Ezample 4. Consider defining another GADT to encode addition among our
(type) number representation.

data Sum 1 m n where
Base :: Sum Z n n
Step :: Sum 1 mn -> Sum (S 1) m (S n)

We make use of the Sum type class to refine the type of the append function.
Thus, we can state the desired property that the length of the output list equals
the sum of the length of the two input lists.

append2 :: Sum 1 m n -> List a 1 -> List am -> List an
append2 Base Nil ys = Nil -- wrong!! should be ys
append2 (Step p) (Cons x xs) ys = Cons x (append p xs ys)

For this program GHC reports

append.hs:17:22:
Couldn’t match the rigid variable ‘n’ against ‘Z’
‘n’ is bound by the type signature for ‘append2’
Expected type: List a n
Inferred type: List a Z
In the definition of ‘append2’: append2 Base Nil ys = Nil

For this program Chameleon currently reports:

ERROR: Polymorphic type variable ‘n’ (from line 13, col. 56) instantiated by
append2 :: Sum 1 mn -> List a 1 -> List am -> List an
append2 Base Nil ys = Nil -- wrong!! should be ys

Here we can determine the actual locations that cause the subsumption error to
occur. We could also give information on the assumptions made, though presently
Chameleon does not. We aim in the future to produce something like:

append.hs:10: ERROR: Inferred type does not subsume declared type
Problem: The variable ’m’ makes the declared type too polymorphic
Under the assumptionsll = 4 and h = d arising from
append?2 Eifﬂ Nil ys = Nil
Declared: Sum Z m m -> List a Z -> List am -> List am
Inferred: Sum Z m m -> List a Z -> List a m -> List a Z
append2 Base Nil ys = Nil -- wrong!! should be ys

Our advantage is that we use a constraint-based system where we main-
tain information which constraints arise from which program parts. GHC ef-
fectively performs unification under a mixed prefix, hence, GHC only knows
which ’branch’ failed but not exactly where.

As the examples illustrate, by translating type information to constraints with
locations attached we can use constraint reasoning on the remaining constraint
problem. The constraint reasoning maintains which locations caused any infer-
ences it makes, and we can then use these locations to help report error messages
much more precisely. In this paper we show how to translate complex typing
problems to constraints and reason about the resulting typing problems.



