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ABSTRACT

The well known Selberg trace formula reduces the problem of
calculating the dimension of cusp forms of Siegel upper-half
plane, when the fundamental domain is not compact but has finite
volume, to the evaluation of certain integrals combining with
special values of certain zeta functions. In this paper, we shall
obtain explicit dimension formulae for cusp forms of degree three
with respect to the full modular group Sp(3, Z) and its

principal congruence subgroups by a long computation.
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7.

8.

NOTATION

Z, Q, R, C: ring of rational integers and the fields of
rational numbers, real numbers and complex
numbers respectively.

Mn(Z), Mn(R), Mn(C): rings of n x n matrices over Z, R,
C respectively.

GLn(Z), GLn(R): general linear groups over Z, R
respectively.

SLn(Z), SLn(R): special linear groups over Z, R
respectively.

U(n): group of n x n unitary matrices;

U = wen @] vt =ty

Sp(n, R): the real symplectic matrices of degree n;
specifically,
b
t v En
Sp(n, R) = (M € M2 (R)|] MM =J, J =
n -E_ 0
n

Here En is the identity of matrices ring Mn(C).
Sp(n, Z) = Sp(n, R) n Mzn(Z): the discrete modular subgroup
of degree n
Fn(N): the principal congruence sungroup of level N of

Sp(n, Z), specifically,

Fn(N) = {M € Sp(n, Z)| M= Ezn(mod N) }
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9. H_: Siegel upper-half space of degree n ; specifically,

tz =2z, Im z > 0}

H = {2 € M (0)|
10. D_: the generalized disc of degree n ; specifically,

D = (WeM©] W=w E-W¥F>o0]

11. [S, Ul: element of Sp(n, R) of the form

E s}ru

lo

12. diag [al, ay, ..., a)l or [a;, a,, ..., a]l: the diagonal

°
0 E By~l®

matrix

13. T(s): gamma-function; it is defined by
r(s) = J- et 5 lar for Re s >0
0

14. a(k) = [ao, a,, . am-ll

for j =0, 1, ..., m-1

(mod 2m): oa(k) = aj if k = 2j
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INTRODUCTION

Let Hn be the generalized upper-half plane of degree n
and T be a subgroup of the symplectic group Sp(n, R), which
acts on Hn properly discontinuous (i.e., given two compact
subset A and B of Hn , the set FA,B ={y€er| yA) n B # ¢}
is finite) on Hn . Denote by S(k; I') be the vector space of
Seigel cusp forms of weight k and degree n with respect to
I . In other words, S(k; I') consists of holomorphic function
f on Hn satisfying the following conditions:

A B

(1) £(y(2)) = det(CZ+DY*E(Z) for all vy = €r

c D

(2) Suppose that I a(T)lexp 2rmi (TZ)] 1is the Fourier
expansion of f ; then a(T) = 0 if rank T <n .
Here the summation is over all half integral matrices

T such that T >0 and o(TZ) = trace of TZ

The second condition can be replaced by the growth condition
as follows:

(2') (det Im z)¥/2

|£(Z)| 4is bounded on H .
It is well known that S(k; TI') 1is a finite dimensional
vector space. Furthermore, the dimension of S(k; I') over C

is given by Selberg trace formula as follows [12]:

Received by the editor April 11, 1986.
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; 5\ K
dimg S(k; ) = Ck, n)jF LKz, DYz

when k > 2n+3

1. C(k, n) =271

n-1 . n-1 .
(2m) R(OHL) /2 TpT g -2 D nirck -n-+§>|'l
1=0 i=0

2. F 1is a fudamental domain on Hn for T

in T1/{+1}

A B
3. In the summation M ranges over all matrices
C D
M(Z). -1 _ -
Z—%%Zl) det (CZ+D) I for

4 . KM(Z, Z) = (det Im Z)det(

A B

C D

5. dZ 1is the symplectic volume defined by

az = (det v) "™V axay if z = x+iy .

Our main interest in this paper is to compute explicitly

dimC S(k; I') wvia Selberg trace formula when T = Sp(3, Z)

As claimed in my previous paper [ll], a dimension formula

for the vector space of Siegel cusp forms of degree three with

respect to Sp(3, Z)

can be obtained once the conjugacy classes

of Sp(3, Z) are given explicitly. However, the number of

conjugacy classes in

Sp(3, Z) are so large that one cannot

expect to get a correct formula without making any mistake in the

computation of more than 300 contributions. Fortunately, we

’
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observe that dimC S(k; Sp(3, 2)) 1is a finite sum of P(k)C(k)
with P(k) being an integral divisor of (2k-2)(2k—3)(2k-4)2 X
(2k-5) (2k-6) such as (2k-2)(2k-4)2(2k-62(2k-3)(2k-5)(2k—4) and
C(k) being a constant or a period function in k such as

(-l)k, cos(2k-2)n/3, sin(k-2)7n/3 . After selected [l4] concribu-
tions (we call these contributions the main terms) from the
dimension formula, we found that the sum of the remaining terms

appears to be the form
Cy () (2k-4)% + Cy (k) (2k-4) + Cy(K)
with Cj(k) = Cj(k+12), j=1, 2, 3.

Note that the sum of the main terms and Cl(k)(Zk-A)2 +
Cz(k)(Zk-A) -+ C3(k) is an integer. It forces that Cj(k)
(j =1, 2, 3) must satisfy certains conditions. More precisely,

if we let P(k) denote the sum of the main terms, then we have
Cl(k)(2k~4)2-+C2(k)(2k-4)-+C3(k) = dimCS(k; Sp(3, Z)) -pP(k),
Cl(k)(2k+20)21-Cz(k)(2k+20)-+C3(k)==dimCS(k+12;Sp(3,Z» -Pk+12),
Cl(k)(2k+44)2-+cz(k)(2k+44)-+C3(k)==dimCS(k+24;Sp(3,Z» - P(k+24).

This tells us that Cj(k) (j =1, 2, 3) can be determined by
three consecutive integers dimC S(k; Sp(3, Z)), dimc S(k+12;
Sp(3, 7)), dimC S(k+24; Sp(3, Z)) and the sum of the main terms
P(k) . Now a direct computation with the help of the above
observation, we are able to write down the explicit expression of

dimC S(k; Sp(3, Z)) correctly.
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MAIN THEOREM I. For even integer k = 10, the dimension

formula for the vector space of Siegel cusp forms of degree three

and weight k 1is given by

dimC S(k, Sp(3, Z)) = Sum of Main Terms

+ Cl(k)(2k-4)2-+cz(k)(2k—4)-+C3(k)

where the main terms and the values of Cj(k) (G =1, 2, 3) are

given by TABLE I as follows:

TABLE I Main Terms in the Dimension Formula

No. Contribution Conjugacy Classes
1 g lagmg=2 l(2k 2) (2k-3) (2k-4) % (2k=5) (2k=6) E
2 271937457131 (ok-2) (2K-4) % (2k-6) (1, 1, -1]
3 2713373576 (2k-3) (2Kk-4) (2k-5) E, ['é _i] , (s #0)
4 2710372571 (9k3) (2Kk-4) (2k-5) x [-2, 0, 2] ) iy
5 2 773775 T (2k-4) (2k-5) x [-10, 20, -10] o1 2 m st
6 2'93‘55'1(2k-4) x [8, 10, -18] 3737373
7 -(-DX27 1237257 (542 (1, 1, *i]
8 -2 9 -2 l(Zk 4) [S, E,] , rank S = 2
3
-3 -1_-2
9 2 33 lS (2k-4) x [1, 0, -1, 3, -3] Elements with characteris-
-3 -1 -2 tic polynomial
10 2 375 “x [-66, 0, 54, =54, 66] (X+1)2(x* +x3+xX2+X+1)
1
11 7'[1, 0o, 1, 0, 0, 0, 0] Elements of order 7
12 % [, o, 1, o, -1, 0, 0, -1, 0] Elements of order 9
13 é%—[l, o, 1, 1, -1, -1, 0, -1, -1, 1] Elements of order 20
14 f; [1,0,1,0,0,-1,0,0,0,0,0,0,-1,0,0] Elements of order 30

15 The remaining term is Cl(k)(Zk—h)2 + Cz(k)(Zk—Q) + C3(k), where

¢, (k) = 2'73_2[4,2,4,3,3,31

+ 2'123'6[451,1249,451,937,763,937]
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(TABLE I CONTINUED)

¢, () = 73371 0850

3010, 783,-4496,-1714,-1161,-1904]

4378 5314,0,8770, 2560, 2916,2128] .

C3(k) =
* Here C(k) = [ao, aps e am_l] means C(k) = z—aj if k =2j (mod 2m)
for 0 <j Sm-1 .
MAIN THEOREM II. The dimension formula for the vector

space of Siegel cusp forms of degree three with respect to the

congruence subgroup F3(2) of rq = Sp(3, Z) 1is given by

dimC S(k; r3(2))

= [F : T (2)] x[2 65 2 (2k 2) (2k-3) (2k- 4) (2k-5)(2k-6)

+ 2713374571 ok 2y (2k-4) 2 (2k-6)

-lbg-be-1 -13;5-3

-2 (2k-3)(2k-4) (2k-5) - 2 (2k-3) (2k-5)

-13 =1.3=3

~Lig=2y 371 4 9713573,

3725 L ok-s)y + 271337 L ok-ay - 2

934 . 35

for an even integer k = 10 , where [F3: F3(2)] =2

MAIN THEOREM IIL. The dimension formula for the vector

space of Siegel cusp forms of degree three with respect to the

principal congruence subgroup F3(N) (N> 3) of Iy = Sp(3, Z)

is given by

dimg S(k; F3(N))

= [Tq: T,(0)] « 1271937657251 o) 2y (2K-3) (2k-4) 2 (2k-5) (2k-6)

- 2793725 Lo ayNd 4 2773736

where k is an even integer greater than 9 and
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(ry: TN = %NZl 1A -p?)
p| N p: prime

6

a - ph.

1-p

The method we employed here applies to cases of higher
degrees. Indeed, we did reduce the problem of finding
dimc S(k; Sp(n, Z)), at least for the case n =1, 2, 3; to the

problem of
(1) finding conjugacy classes of Sp(n, Z) ,

(2) calculating contributions from certain conjugacy

classes or families of conjugacy classes
and

(3) determining values of certain constants.

Part of the problem in (1) is treated in [22, 30l . Thus
we can write down conjugacy classes of elements whose character-
istic polynomials are products of cyclotomic polynomials by an
iduction on the degree n . The problem in (2) is treated in
[19] in a more general context though not so explicitly. The
problem in (3) can be treated by our knowledge of modular forms
of lower weight instead of direct computation. In our determina-
tion of dimC S(k; Sp(3, Z)), the constants Cj(k) (=1, 2,
3) can be determined uniqued by dimC S(k; Sp(3, Z)) when

10 < k < 44 and the sum of main terms as shown in TABLE TI.

In CHAPTER 1 and 2, we shall determine all conjugacy classes
of Sp(3, Z) explicitly for further usage. We began to compute
contributions by Theorems in [11l] concerning evaluation of

integrals involving in Selberg trace formula and conjugacy

classes given in CHAPTER 1 and 2. In the final CHAPTER, we shall
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combine all contributions by the method we mentioned to obtain

MAIN THEOREMS in this paper.

This is a continuation of my previous work [1ll] on the
dimension formula of Siegel cusp forms of degree three. I would
like to thank my advisor Professor W. L. Baily Jr. at the
University of Chicago. Without his constant encouragement, I may

give up in the middle owning to the complication of computation.



CHAPTER I
FIXED POINTS AND CONJUGACY CLASSES OF REGULAR

ELLIPTIC ELEMENTS IN Sp(3, Z)

1.1. Introduction

In [ 13] and [ 14], E. Gottschling studied the fixed points
and their isotropy groups of finite order elements in Sp(2, Z).
He finally obtained six Sp(2, Z)-inequivalent isolated fixed

points as follows:

(1) 2z, = diag [1, il , (2) 2z, = diag [0, ol, 0 = e™/3,
(2) 24 = diag [1i, ol , 4 z, = j%—{i l ]

© "5 T L (n—I)/Z (n-:)/z J, o % : 2431 ’

© 2, - : w+i_2 f:t;% }, W = &2mi/5

The isotropy subgroups at Zi (i=1, 2, 3, 4, 5, 6) are groups
of order 16, 36, 12, 24, 5 respectively.

By the arguement of [30] , these fixed points can be

obtained from symplectic embeddings of

mi/6

Q(i) @ Q(i), Q(p) € Qlp), Qi) e Qp), Q(e ),

™%y qe?mi/?

Q( )



SIEGEL CUSP FORMS OF DEGREE THREE 9

into MA(Q) . In this CHAPTER, we shall combine the reduction
theory of symplectic matrices [5, 6] with the arguements of
[22, 30] and obtain all Sp(3, Z)-inequivalent isolated fixed
points and conjugacy classes of regular elliptic elements in
Sp(3, Z). A table for all representatives and their centralizer
in Sp(3, Z)/{+1l} of regular elliptic conjugacy classes in

Sp(3, Z) 1is given in 1.4.

1.2 Notations and Basic Results

Let Z, Q, R and C denote the ring of integers, the
fields of rational, real and complex numbers respectively. The

real symplectic matrices of degree n ,

E

t 0 En
Sp(n, R) = { M e M2n(R)| MIM =7, J = " } ,
““n

acts on the generalized half space Hn defined by

_ _ t
H o ={Z2eM (O] Z2="2, InZ>0}

Here MZn(R) is the 2n x 2n matrix ring over R, Mn(C) is the
n x n matrix ring over C, En is the identity of Mn(C) and

Y7 is the transpose of Z

A point Zy in Hn is called an isolated fixed point of

A B
Sp(3, Z) 1if there exists M = [ J in Sp(3, Z) such that
C D

Z is the unique solution of the equation,

0

AZ + B = Z(CZ + D), Z € Hn .
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An element M of Sp(3, Z) 1is regular elliptic if M has
an isolated fixed point [see 10]. Now suppose M 1is a regular
elliptic element of Sp(3, Z) , then by the discreteness of
Sp(3, Z) and the property that Sp(3, R) acts transitively on
H3 , we concluded that

(1) M is an element of finite order,

A B
(2) M 1is conjugate in Sp(3, R) to { ] with
-B A
A+ Bi = diag[xl, Xz, A3], A. (1 =1, 2, 3) root of

1

unity and xixj # 1 for all i, j ,

(3) the centralizer of M in Sp(3, Z) 1is a group of

finite order.

By the property (1), we see that the minimal polynomial of M is
a product of different cyclotomic polynomials of degree at most
6 as follows:

X241, X2-x+1, X24x+1, x%41, x%-x%41, x4axSex®ax 41,

X x3 P oxer, x0-x341, x04x341, xOexPaxtaxdaxex+l

il

6 5 b

X0 -x2 x4 -x34x2

-X7+X7-X+1

For our convenience, we identify Sp(nl, R) «x Sp(nz, R) as

a subgroup of Sp(nl+n2, R) wvia the embedding

PR

o o o »
el [T, ] o
. 0o o 2w
n o o o



