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THE ANALYSIS AND SELECTION OF VARIABLES
IN LINEAR REGRESSION
R. R. Hocking
Department of Computer Science and Statistics

Mississippi State University
Mississippi State, Mississippi 39762

SUMMARY

The purpose of this paper is to review some of the concepts and
methods associated with the analysis and selection of variables in
linear regression. Included is a summary of the highlights of variable
selection methods and of biased estimation procedures. The relative
performance of these techniques is illustrated by examples.

1. INTRODUCTION

In the multiple linear regression problem, the analyst attempts to
develop an equation, depending on a set of input variables, which is to
be used to describe a response variable. The available "pool" of input
variables may consist of actual measurements, functions of them and in-
dicator variables to describe qualitative characteristics. This pool
is often quite sizeable, including some variables which are not relevant
and some which are highly intercorrelated. Typically, the analysis will
include a variable elimination procedure to reduce the number of vari-
ables and, presumably, yield a good equation.

Computational procedures for evaluating subset regressions and cri-
teria for choosing the "best" subset have been the subject of numerous
papers. Usually, the analysis of the original and the subset equations
has been based on least squares.

More recently, several alternatives to least squares estimation

have been proposed under the general heading of biased estimators.



These procedures were motivated, primarily, by the problem of multi-
collinearities among the input variables and were not directly concern-
ed with variable elimination. However, the deletion of variables with
small standardized coefficients is a natural step.

The purpose of this paper is to summarize the essential ideas in
variable selection and biased estimation. It is natural to ask if the
quality of the equation which results by any of these procedures is
essentially independent of the method used to obtain it. Some tenta-
tive conclusions are made based on the results for two examples.

To limit the scope of this discussion it is assumed that the data
satisfies the usual linear model assumptions. This includes the assump-
tion that the data is free of outliers. On this point, Marquardt, [1974],
observes that, the instability of least squares in the presence of near-
linear dependencies among the input variables, may lead to erroneous con-
clusions with regard to possible outliers. Thus, one should include out-
lier analysis as an integral part of the entire process of determining a
good equation rather than just a preliminary step.

The complexity of the problem and the volume of literature on the
topic forces us to restrict this paper to some of the highlights of the
problem. A more detailed account and an extensive bibliography is pro-

vided by Hocking [1976].

2. NOTATION AND BASIC CONCEPTS
2.1. Notation. The usual linear model with n observations on t input
variables is assumed. For convenience, all variables, including the de-
pendent variable, are standardized to have mean zero and unit sum of
squares. The model and the data are expressed in matrix notation as

Y =XB + e (1)



where X is nxt of rank t. The least squares estimator of B is given by
solving the normal equations
X'X8 = X'Y )

where in view of our assumptions, X'X and X'Y consist of sample correla-
tion coefficients.

In the discussion of alternative estimators, it is convenient to
transform to the space of orthogonal predictors. To achieve this, let
A denote the diagonal matrix of eigenvalues, Ai’ of X'X and T, the cor-

responding orthogonal matrix of eigenvectors, Ti’ Thus,

T'X'XT = A. (3)
Under the transformation
Z=XT , B=Ty C))
the model, (1), becomes
Y=2y + e (5)

and the least squares estimate of y is given by solving the equation,

My = Z2'Y. (6)
The relation between é and ; is given by (4). That is, é = T;. The
variables in (5) are labelled according to the magnitude of the Ai’
with At denoting the smallest and Al the largest.

2.2. The Consequences of Incorrect Model Specification. In addition

to the economical and practical reasons for wanting to minimize the num-
ber of variables in the finmal equation, variable deletion may be desire-
able in terms of the statistical properties of the estimates and of the
final equation. The consequences of incorrectly specifying the model
either by retaining extraneous variables or deleting essential variables
can be examined by writing the model (1) in partitioned form as

Y = Xpo + Xrﬁr + e 7



where Xr denotes the extraneous variables or -the variables to be deleted.
A detailed account of properties of the estimates obtained by fit-
ting (7) or the model with Xr deleted is given by Hocking [1976]. Let-
ting Ep and ér denote the least squares estimates for (7) and ép the
estimate of BP for the reduced model, the motivation for variable elimi-
nation is contained in the following:
1. VAR(ép) - VAR(ép) is positive semi-definite and if

\ ~ 4 -1
8. (VAR(B)) © B,

A

02 then VAR(gp) - MSE(EP) is positive
semi-definite.

2. For prediction at x' = (xﬁ x;), let ; = x‘é and ;p = x'pép'

Then VARP(y) > VARP(;p) and if B (VAR(8)) '8, < o’ then

VARP(y) > MSEP(;p). (Here VARP and MSEP denote prediction

variance and mean squared error.)

2.3. The Effects of Multicollinearity. The problems which arise because

of near-linear dependencies among the input variables were recently
reviewed by Mason et al. [1975]. A near-linear relation between two
variables is indicated by the simple correlation coefficient. More com-
plex linear relations are indicated by small eigenvalues of the correla-
tion matrix. Alternatively, if Rz denotes the squared multiple correla-
tion coefficient for regressing variable i on the remaining inputs, then
Ri close to one indicates a dependency. The specific nature of the re-
lation can be obtained from this regression or, alternatively, by examining
the eigenvectors.

To see the effects of such a degeneracy in the data, let rij denote
the components of X'X and rij denote the components of (X'X)_l. Then,

e i (8

and, for i # j

o S 33, (9)



Here, rij.x denotes the partial correlation between variables i and j
conditioned on the remaining inputs variables. Clearly, the elements
of (X'X)_1 corresponding to the variables involved in a near-linear de-
pendency will be large, and the estimates of the associated Bi will be
highly variable. Marquardt [1970} referred to this as variance infla-
tion and defined the variance inflation factor as VIF = Max (rii).
Hoerl and Kennard [1970a] noted that the average squared distance

from é to B is given by

- 2 v
trace (VAR(8)) = o° I 1] . (10)

i=1
Near-linear dependencies, characterized by small eigenvalues,will in-
flate this quantity.
To see the effect on éi’ note that if riy denotes the simple cor-
relation between x5 and y then, .
- ii ij
Bi =T riy + jiir Jrjy. (11)
If variable i is involved in the degeneracy, the effect of riy will be
inflated.
With respect to variable elimination, the reduction in the regres-
sion sum of squares caused by eliminating variable i is given by
Red, = 82 / r'' = 87 (1-rD). (12)
A small value of l-Ri may well be offset by the inflated value of éi
in (12),hence,variables involved in the dependency may be retained.
Finally, consider the effect on the residual sum of squares. The
essential quantity is Xé whose variance may be written as,

. t '-1 2
VXB) = T (XT,)(XT,) A o, (13)

i=1

Note that if Ai is near zero then XTi will be nearly the zero vector,

hence the effect of the small eigenvaluesis dampened. As a result, the



residual sum of squares may not reflect the. presence of small eigen-

values.,
3. COMPUTATIONAL PROCEDURES AND CRITERIA FOR SUBSET SELECTION

The objective in a regression study is to obtain a thorough under-
standing of the relations between the input and response variables and
the relative roles of the inputs in describing the response. There are
classic examples of situations in which an input is apparently unrelated
to the response but,when used in combination with other variables, this
input is important. Conversely, when X is nearly degenerate, it is not
unusual that the deletion of a variable with a large, standardized co-
efficient has little effect on the performance of the resulting equation.

One means of studying the relative roles of the input variables is
to examine their performance in all possible combinations with other
variables. It seems reasonable to assume that a careful study of all
2t such subsets would provide the necessary information. The computa-
tional problem of fitting all Zt regressions with the necessary output
to provide the proper indicators is formidable for even moderate values
of t. Also, when t is large, there is a need for reducing the evalua-
tion of the performance of a subset to the inspection of a small number
of statistics.

The computing problem is conceptually the simplest. The litera-
ture on computational techniques has been devoted to the development of
e f ficient methods for evaluating all possible subsets for small t and
methods that will reveal most of the desired information while perform-
ing a modest amount of computing for large t. In the former category

the papers by Garside [1965], Schatzoff et al. [1968], Furnival [1971]

10



and Morgan and Tatar [1972] are important and in the latter category,

we mention the papers by Hocking and Leslie [1967], Beale et al. [1967],
Kirton [1967], Beale [1970], Lamotte and Hocking [1970] and Furnival
and Wilson [1974]. The efficiency of these procedures combined with
the quality and quantity of information which is provided would appear
to make the stepwise procedures inadmissible.

The "optimal" subset algorithms, in the second category mentioned
above, will identify the subset of each size with smallest residual sum
of squares (RSS) and a number of other subsets with small RSS while
evaluating only a small fraction of the possible 2t subsets. The mini-
mum RSS subsets are frequently referred to as 'best', but it is empha-
sized that they are best only in this restricted sense. The implied
optimality may reflect only this sample and may not be typical of the
population. In many cases, for reasons of economy and convenience, and,
as we shall see, variance inflation, other suboptimal subsets may be
preferable.

Most of the criteria for subset evaluation are based on simple
functions of RSS. If we let RSSP denote RSS for a particular p-term

equation, then some of the most common functions are,

1. R” =1 - RSS_/Total
P P
2. R =1 - RMS_(n-1)/Total
P p
3. RMS_ = RSS_/(n-
b 122( p)
4., C_ = RSS /o© + 2p-n
p p v
5. S = RMS /(n-p-1).
b b (n-p-1)

A detailed account of these and other criteria functions is given by

Hocking [1976].
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