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Preface

The C.ILM.E. Session “Real Methods in Complex and CR Geometry” was held
in Martina Franca (Taranto), Italy, from June 30 to July 6, 2002. Lecture series
were given by:

M. Abate: Angular derivatives in several complex variables

J. E. Fornaess: Real methods in complex dynamics

X. Huang: On the Chern-Moser theory and rigidity problem for holomor-
phic maps

J. P. Rosay: Theory of analytic functionals and boundary values in the
sense of hyperfunctions

A. Tumanov: Eztremal analytic discs and the geometry of CR manifolds

These proceedings contain the expanded versions of these five courses. In
their lectures the authors present at a level accessible to graduate students the
current state of the art in classical fields of the geometry of complex manifolds
(Complex Geometry) and their real submanifolds (CR Geometry). One of the
central questions relating both Complex and CR Geometry is the behavior
of holomorphic functions in complex domains and holomorphic mappings be-
tween different complex domains at their boundaries. The existence problem
for boundary limits of holomorphic functions (called boundary values) is ad-
dressed in the Julia-Wolff-Caratheodory theorem and the Lindel6f principle
presented in the lectures of M. Abate. A very general theory of boundary val-
ues of (not necessarily holomorphic) functions is presented in the lectures of
J.-P. Rosay. The boundary values of a holomorphic function always satisfy the
tangential Cauchy-Riemann (CR) equations obtained by restricting the clas-
sical CR equations from the ambient complex manifold to a real submanifold.
Conversely, given a function on the boundary satisfying the tangential CR
equations (a CR function), it can often be extended to a holomorphic func-
tion in a suitable domain. Extension problems for CR mappings are addressed
in the lectures of A. Tumanov via the powerful method of the extremal and
stationary discs. Another powerful method coming from the formal theory and
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inspired by the work of Chern and Moser is presented in the lectures of X.
Huang addressing the existence questions for CR maps. Finally, the dynamics
of holomorphic maps in several complex variables is the topic of the lectures
of J. E. Fornaess linking Complex Geometry and its methods with the theory
of Dynamical Systems.

We hope that these lecture notes will be useful not only to experienced
readers but also to the beginners aiming to learn basic ideas and methods in
these fields.

We are thankful to the authors for their beautiful lectures, all participants
from Italy and abroad for their attendance and contribution and last but not
least CIME for providing a charming and stimulating atmosphere during the
school.

Dmitri Zaitsev and Giuseppe Zampieri

CIME'’s activity is supported by:

Ministero degli Affari Esteri - Direzione Generale per la Promozione e la
Cooperazione - Ufficio V;

Consiglio Nazionale delle Ricerche;

E.U. under the Training and Mobility of Researchers Programme.
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Angular Derivatives
in Several Complex Variables

Marco Abate

Dipartimento di Matematica, Universita di Pisa
Via Buonarroti 2, 56127 Pisa, Italy
abate@dm.unipi.it

1 Introduction

A well-known classical result in the theory of one complex variable, due to
Fatou [Fa], says that a bounded holomorphic function f defined in the unit
disk A admits non-tangential limit at almost every point o € JA. As satisfying
as it is from several points of view, this theorem leaves open the question of
whether the function f admits non-tangential limit at a specific point oy € 0A.
Of course, one needs to make some assumptions on the behavior of f near
the point og; the aim is to find the weakest possible assumptions. In 1920,
Julia [Jul] identified the right hypothesis: assuming, without loss of generality,
that the image of the bounded holomorphic function is contained in the unit
disk then Julia’s assumption is
lim inf lﬂ < +o0. (1)
¢—oo 1]
In other words, f(¢) must go to the boundary as fast as { (as we shall
show, it cannot go to the boundary any faster, but it might go slower). Then
Julia proved the following

Theorem 1.1 (Julia) Let f € Hol(A, A) be a bounded holomorphic function,
and take o € OA such that
1—1£(9)]

liminf —————= = 3 < 4+
¢—o 1—|(]

for some 3 € R. Then 3 > 0 and f has non-tangential limit T € 0A at o.

As we shall see, the proof is just a (clever) application of Schwarz-Pick
lemma. The real breakthrough in this theory is due to Wolff [Wo] in 1926
and Carathéodory [C1] in 1929: if f satisfies 1 at o then the derivative f’
too admits finite non-tangential limit at ¢ — and this limit can be computed
explicitely. More precisely:
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Theorem 1.2 (Wolff-Carathéodory) Let f € Hol(A, A) be a bounded holo-
morphic function, and take o € OA such that

Ii?lj?f %f[(cﬁﬂ =0 <+

for some B > 0. Then both the incremental ratio

-7

(—0o

and the derivative f' have non-tangential limit 376 at o, where T € A is the
non-tangential limit of f at o.

Theorems 1.1 and 1.2 are collectively known as the Julia - Wolff - Cara—
théodory theorem. The aim of this survey is to present a possible way to
generalize this theorem to bounded holomorphic functions of several complex
variables.

The main point to be kept in mind here is that, as first noticed by Koranyi
and Stein (see, e.g., [St]) and later theorized by Krantz [Krl1], the right kind
of limit to consider in studying the boundary behavior of holomorphic func-
tions of several complex variables depends on the geometry of the domain,
and it is usually stronger than the non-tangential limit. To better stress this
interdependence between analysis and geometry we decided to organize this
survey as a sort of template that the reader may apply to the specific cases
s/he is interested in.

More precisely, we shall single out a number of geometrical hypotheses
(usually expressed in terms of the Kobayashi intrinsic distance of the domain)
that when satisfied will imply a Julia-Wolff-Carathéodory theorem. This ap-
proach has the advantage to reveal the main ideas in the proofs, unhindered
by the technical details needed to verify the hypotheses. In other words, the
hard computations are swept under the carpet (i.e., buried in the references),
leaving the interesting patterns over the carpet free to be examined.

Of course, the hypotheses can be satisfied: for instance, all of them hold for
strongly pseudoconvex domains, convex domains with C“ boundary, convex
circular domains of finite type, and in the polydisk; but most of them hold
in more general domains too. And one fringe benefit of the approach chosen
for this survey is that as soon as somebody proves that the hypotheses hold
for a specific domain, s/he gets a Julia-Wolff-Carathéodory theorem in that
domain for free. Indeed, this approach has already uncovered new results: to
the best of my knowledge, Theorem 4.2 in full generality and Proposition 4.8
have not been proved before.

So in Section 1 of this survey we shall present a proof of the Julia-Wolff-
Carathéodory theorem suitable to be generalized to several complex variables.
It will consist of three steps:
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(a) A proof of Theorem 1.1 starting from the Schwarz-Pick lemma.

(b) A discussion of the Lindeldf principle, which says that if a (/-)bounded
holomorphic function has limit restricted to a curve ending at a boundary
point then it has the same limit restricted to any non-tangential curve
ending at that boundary point.

(¢c) A proof of the Julia-Wolff-Carathéodory theorem obtained by showing
that the incremental ratio and the derivative satisfy the hypotheses of the
Lindelof principle.

Then the next three sections will describe a way of performing the same three
steps in a several variables context, providing the template mentioned above.

Finally, a few words on the literature. As mentioned before, Theorem 1.1
first appeared in [Jul], and Theorem 1.2 in [Wo]. The proof we shall present
here is essentially due to Rudin [Ru, Section 8.5]; other proofs and one-variable
generalizations can be found in [A3], [Ah], [C1, 2], [J], [Kom], [LV]. [Me], [N].
[Po], [T] and references therein.

As far as I know, the first several variables generalizations of Theorem 1.1
were proved by Minialoff [Mi] for the unit ball B> C C?, and then by
Hervé [He| in B™. The general form we shall discuss originates in [A2]. For
some other (finite and infinite dimensional) approaches see [Bal, [M], [W], [R].
[W11] and references therein.

The one-variable Lindelof principle has been proved by Lindelof [Lil, 2];
see also [A3, Theorem 1.3.23], [Ru, Theorem 8.4.1], [Bu, 5.16, 5.56, 12.30,
12.31] and references therein. The first important several variables version of
it is due to Cirka [C]; his approach has been further pursued in [D1, 2|, [DZ]
and [K]. A different generalization is due to Cima and Krantz [CK] (see also
[H1, 2]), and both inspired the presentation we shall give in Section 3 (whose
ideas stem from [A2]).

A first tentative extension of the Julia-Wolff-Carathéodory theorem to
bounded domains in C? is due to Wachs [W]. Hervé [He] proved a preliminary
Julia-Wolff-Carathéodory theorem for the unit ball of C™ using non-tangential
limits and considering only incremental ratioes; the full statement for the unit
ball is due to Rudin [Ru, Section 8.5]. The Julia-Wolff-Carathéodory theorem
for strongly convex domains is in [A2]; for strongly pseudoconvex domains
in [A4]: for the polydisk in [A5] (see also Jafari [Ja], even though his state-
ment is not completely correct); for convex domains of finite type in [AT2].
Furthermore, Julia-Wolff-Carathéodory theorems in infinite-dimensional Ba-
nach and Hilbert spaces are discussed in [EHRS], [F]. [MM], [SW], [W12, 3, 4].
[Z] and references therein.

Finally, I would also like to mention the shorter survey [AT1], written, as
well as the much more substantial paper [AT2], with the unvaluable help of
Roberto Tauraso.
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2 One Complex Variable

We already mentioned that Theorem 1.1 is a consequence of the classical
Schwarz-Pick lemma. For the sake of completeness, let us recall here the rel-
evant definitions and statements.

Definition 2.1 The Poincaré metric on A is the complete Hermitian met-
ric k% of constant Gaussian curvature —4 given by

‘ 1
2 =
kA(() = ————= dz dz.
(1—1¢[%)?
The Poincaré distance w on A is the integrated distance associated to k.
It is easy to prove that

gl _§2
1 + ‘1 53

‘ G1—(
1-C2C1

w((1,¢) =

MI»—A

For us the main property of the Poincaré distance is the classical Schwarz-Pick
lemma:

Theorem 2.2 (Schwarz-Pick) The Poincaré metric and distance are con-
tracted by holomorphic self-maps of the unit disk. In other words, if f €
Hol(A, A) then

V(e A Fr(k3)(Q) < FA(Q) (2)
and
V(1,5 €A w(f(&), f(¢2) S w(r, ). (3)

Furthermore, equality in 2 for some ( € A or in 8 for some (3 # (2 occurs iff
f ts a holomorphic automorphism of A.

A first easy application of this result is the fact that the liminf in 1 is
always positive (or +o00). But let us first give it a name.

Definition 2.3 Let f € Hol(A, A) be a holomorphic self-map of A, and o €
0A. Then the boundary dilation coefficient 3(c) of f at o is given by

Bs(0) = lim inf %f'(g')'

If it us finite and equal to B > 0 we shall say that f is f-Julia at o.
Then
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Corollary 2.4 For any f € Hol(A, A) we have
1 /(©) L 1-17)

0 4
- S 10 ”
for all ¢ € A; in particular,
1—|f(0
)2 Ty >

for all 0 € DA.
Proof. The Schwarz-Pick lemma yields
w (0, £(¢)) < w(0, f(0)) +w(f(0), £(¢)) < w(0,f(0)) +w(0,0),

that is
L+ £ 1+ 17O 1+
1= (Ol = 1=[f(0)] 1-¢]
for all ¢ € A. Let a = (|f(0)] + [¢])/(1 + |f(0)]|C]); then the right-hand side
of 5 is equal to (1 4+ a)/(1 — a). Hence |f(¢)| < a, that is

L0 )]
7o = D)

for all { € A, as claimed. O

(5)

1= f(O = (1—c])

The main step in the proof of Theorem 1.1 is known as Julia’s lemma, and
it is again a consequence of the Schwarz-Pick lemma:

Theorem 2.5 (Julia) Let f € Hol(A, A) and 0 € A be such that
1— £l

liminf ————> = 3 < +4o00.
(o 1-¢

Then there exists a unique T € OA such that

Ir = fOP o —¢I?

T i7oF =T TE )
Proof. The Schwarz-Pick lemma yields
f(C)jf(U)' ¢— ’
L= fmf(Q) 11 —n¢
and thus _
- SI QR _ 1= 1=l -

1-[f@QF — 1= 1-I¢?
for all n, ( € A. Now choose a sequence {ny} C A converging to ¢ and such
that
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. L@ _
k—+toc 1 — ‘771\.|
in particular, |f(nx)| — 1, and so up to a subsequence we can assume that
flm) = 7 € OA as k — +oo. Then setting n = n. in 7 and taking the limit
as k — +o00 we obtain 6.
We are left to prove the uniqueness of 7. To do so, we need a geometrical
interpretation of 6.

Definition 2.6 The horocycle E(o, R) of center o and radius R is the set
_ 2
E(0.R) = {g €A * |1” l2’||2 < R}.

Geometrically, F(o, R) is an euclidean disk of euclidean radius R/(1 + R)
internally tangent to 0A in o; in particular,

2R
|U*C|§1+_R<2R (8)

for all ¢ € E(o, R). A horocycle can also be seen as the limit of Poincaré disks
with fixed euclidean radius and centers converging to o (see, e.g., [Ju2] or [A3,
Proposition 1.2.1]).

The formula 6 then says that

f(E(o,R)) C E(r,BR)

for any R > 0. Assume, by contradiction, that 6 also holds for some 7, # T,
and choose R > 0 so small that E(r, 3R) N E(11, BR) =. Then we get

# f(E(o,R)) C E(1,BR) N E(11,BR) =,

contradiction. Therefore 6 can hold for at most one 7 € 9A, and we are done.
O

In Section 4 we shall need a sort of converse of Julia’s lemma:
Lemma 2.7 Let f € Hol(A, A), o, 7 € 0A and 3 > 0 be such that
f(E(o.R)) C E(1,8R)
for all R > 0. Then 3s(c) < 5.

Proof. Fort € [0,1) set Ry = (1—t)/(1+4t), so that to € OE(o, R;). Therefore
f(to) € E(1,BR;); hence

1—|f(to)| _ |7 = f(to)| Ry 2
< 23 =
- = 11—t = /1—t 1+t/3’
by 8, and thus
= 1—
/3f(0') = 11?1_’1‘51f11_|—f|(gc|)| < h,I_I},lullf_Ji—(iU)l < ﬂ
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To complete the proof of Theorem 1.1 we still need to give a precise defi-
nition of what we mean by non-tangential limit.

Definition 2.8 Take o € A and M > 1; the Stolz region K (o, M) of ver-
tex o and amplitude M 1is given by

K(o,M) = {c ealle=d_ M}.
1—(¢|
Geometrically, K (o, M) is an egg-shaped region, ending in an angle touching
the boundary of A at . The amplitude of this angle tends to 0 as M — 17,
and tends to m as M — +o00. Therefore we can use Stolz regions to define the
notion of non-tangential limit:

Definition 2.9 A function f: A — C admits non-tangential limit L € C at
the point o € DA if f(¢) — L as ¢ tends to o inside K (o, M) for any M > 1.

From the definitions it is apparent that horocycles and Stolz regions are
strongly related. For instance, if ¢ belongs to K (o, M) we have

o=¢P _Jo—¢| lo—¢]
T=cf T 11— TTId]

and thus ¢ € E(o, M|o —{]).
We are then ready for the

Proof of Theorem 1.1: Assume that f is p-Julia at o, fix M > 1 and
choose any sequence {(r} C K(o, M) converging to o. In particular, (x €
E(o,M|o — (g|) for all k € N. Then Theorem 2.5 gives a unique 7 € A such
that f(¢x) € E(r,BM|c — (k|). Therefore every limit point of the sequence
{f(¢k)} must be contained in the intersection

< Mlo — ¢,

() B(r, BM]o — G|) = {7},

keN

that is f((x) — 7, and we have proved that f has non-tangential limit 7
at o. 0

To prove Theorem 1.2 we need another ingredient, known as Lindelof
principle. The idea is that the existence of the limit along a given curve in A
ending at o € 0A forces the existence of the non-tangential limit at . To be
more precise:

Definition 2.10 Let o € dA. A o-curve in A is a continous curve y:[0,1) —
A such that y(t) — o ast — 1. Furthermore, we shall say that a function
f: A — C is K-bounded at o if for every M > 1 there exists Cpy > 0 such
that | f(¢)| < Cw for all ¢ € K(o,M).

Then Lindelof [Li2] proved the following
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Theorem 2.11 Let f: A — C be a holomorphic function, and o € OA. As-
sume there is a o-curve v:[0,1) — A such that f('y(t)) —LeCast—1".
Assume moreover that

(a) [ is bounded, or that
(b) f is K-bounded and v is non-tangential, that is its image is contained in
a K-region K (o, My).

Then f has non-tangential limit L at o.

Proof. A proof of case (a) can be found in [A3, Theorem 1.3.23] or in [Ru,
Theorem 8.4.1]. Since each K (o, M) is biholomorphic to A and the biholo-
morphism extends continuously up to the boundary, case (b) is a consequence
of (a). Furthermore, it should be remarked that in case (b) the existence of
the limit along v automatically implies that f is K-bounded ([Lil]; see [Bu,
5.16] and references therein).

However, we shall describe here an easy proof of case (b) when 7 is radial,
that is v(¢t) = to, which is the case we shall mostly use.

First of all, without loss of generality we can assume that o = 1, and then
the Cayley transform allows us to transfer the stage to H = {w € C | Imw >
0}. The boundary point we are interested in becomes oo, and the curve v is
now given by v(t) = (1 +t)/(1 —t).

Furthermore if we denote by K (oo, M) C H* the image under the Cayley
transform of K(1, M) C A, and by K. the truncated cone

K.={we H' |Imw > ¢ max{1,|Rew|} },

we have

K (oo, M) C K1/2m) and
Kijea N{w e H [Tmw > R} C K(c0, M'),

for every R, M > 1, where

/ R+1
M =4/14+4M2———.
+ R-1

The first inclusion is easy; the second one follows from the formula

2

14 Im 2

el
ISl +Re¢ [1—[C]]

9)

i
1 —|¢]
true for all ( € A with Re{ > 0.

Therefore we are reduced to prove that if f: H¥ — C is holomorphic and
bounded on any K., and fo~(t) - L € Cast — 17, then f(w) has limit L
as w tends to oo inside K..

Choose ¢’ < € (so that K. D K.), and define f,: K. — C by f,(w) =
f(nw). Then {f,} is a sequence of uniformly bounded holomorphic functions.
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Furthermore, f,(ir) — L as n — +oc for any r > 1; by Vitali’s theorem, the
whole sequence {f,} is then converging uniformly on compact subsets to a
holomorphic function f: K. — C. But we have f.(ir) = L for all » > 1;
therefore f,, = L. In particular, for every § > 0 we can find N > 1 such that
n > N implies

[fn(w) — L] <§ for all w € K. such that 1 < |w| < 2.

This implies that for every § > 0 there is R > 1 such that w € K. and |w| > R
implies |f(w)— L| < ¢, that is the assertion. Indeed, it suffices to take R = V:
if [w| > N let n > N be the integer part of |w|, and set w’ = w/n. Then
w' € K. and 1 < |w'| < 2, and thus

[f(w) = L| = |fa(w") = L] < 9,
as claimed. 0O

Example 1.1t is very easy to provide examples of K-bounded functions which
are not bounded: for instance f(¢) = (1 + ¢)~! is K-bounded at 1 but it
is not bounded in A. More generally, every rational function with a pole at
7 € 0A and no poles inside A is not bounded on A but it is K-bounded at
every o € 0A different from 7.

We are now ready to begin the proof of Theorem 1.2. Let then f €
Hol(A, A) be -Julia at 0 € A, and let 7 € A be the non-tangential limit
of f at o provided by Theorem 1.1. We would like to show that f’ has non-
tangential limit 37 at o; but first we study the behavior of the incremental

ratio (f(¢) — 7)/(¢ — o).
Proposition 2.12 Let f € Hol(A, A) be -Julia at 0 € 0A, and let T € 0A
be the non-tangential limit of f at o. Then the incremental ratio

fQ—r
C—o

1s K-bounded and has non-tangential limit 376 at o.

Proof. We shall show that the incremental ratio is K-bounded and that it has
radial limit 370 at o; the assertion will then follow from Theorem 2.11.(b).

Take ¢ € K(o,M). We have already remarked that we then have ( €
E(o, M|(—al), and thus f(¢) € E(7,BM|(—o]|), by Julia’s Lemma. Recalling
8 we get

1£(¢) — 7| < 2B8M|( — o,

and so the incremental ratio is bounded by 25M in K(o, M).
Now given t € [0,1) set Ry = (1 —t)/(1+t), so that to € IE(0, R;). Then
f(to) € E(7,BR;), and thus
1-—1t

1—|f(to)| < |7 — f(to)| < 28R = 2/61—“-



