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PREFACE

This book, like its first edition, is intended to serve as a text for a first course in
control systems to third- or fourth-year engineering students. Material in later
chapters beyond what can be covered in a first course is used by the author in an
elective second course at the senior undergraduate/ graduate level. The book has
been written to be suitable also for students with a more remote or less complete
educational background, and for self-study.

The text has grown out of many years of experience in teaching the subject
to students in mechanical engineering, industrial engineering, engineering science,
correspondence courses, and to students from industry in night courses. However, to
show the generality and power of the subject, a first course should not be directed
toward a particular department, and the book has been written to be suitable in all
branches of engineering.

It is a pleasure to acknowledge the numerous suggestions for improvement
received from readers and users of the first edition. Also, one pleasing aspect of a
second edition for an author is the chance it gives him to change those features he
dislikes himself. Numerous rearrangements of material between and inside chapters
have been made, and many changes to improve clarity by modifying or adding
words or sentences, in particular where the style in the explanation of theory or
examples was a little too efficient. More examples are given in Chapter 3 on the
modeling of feedback systems, and serve for additional examples of root locus
design and frequency response design in Chapters 6 and 8. Chapter 7 provides an
expanded discussion of the correlation between frequency response and pole—zero
positions. Chapters 9 and 10, on digital control systems, were changed considerably
to improve clarity. This applies also to Chapters 11 and 12, on state space methods.

xiii



Xiv Preface

In Chapter 12 much more detail is provided, the linkage to the earlier design
techniques is given careful attention, the treatment of optimal control is greatly
expanded, and dynamic observers are included. Chapter 13, on multivariable
systems in the frequency domain, has been modified extensively. Certain material,
including inverse Nyquist plots and arrays, has been omitted, and other sections
have been rewritten, in part to accommodate new developments.

It is emphasized, however, that the fundamental approach of the book is
unchanged. To develop insight, concepts are explained in the simplest possible
mathematical framework, and concepts of design are developed in parallel with
those of analysis. Thus Chapter 1 immediately identifies the two questions to be
answered, that is, how dynamic systems behave and how this behavior may be
changed by the use of feedback. This chapter also introduces the basic compromise
between stability and accuracy which underlies all feedback system design. And
Chapter 5 allows a focus on physical explanation of the basic actions of dynamic
controllers, unencumbered by the intricacies of the root locus and frequency
response techniques discussed in Chapters 6 through 8.

A text must accommodate a wide spectrum of preferences on the extent to
which computer aids are incorporated in a course. To achieve this, the text and
the 485 problems have been made independent of such aids, and programs for
interactive computer-aided analysis and design with graphics are collected in
Appendix B, with examples of their use. Reference to these aids is made where
appropriate. The author is pleased to acknowledge the work of graduate student
Philip W. P. Cheng, who developed these programs for use in the Department of
Mechanical Engineering of the University of Toronto.

Finally, the author expresses his gratitude to his wife, who typed the
manuscript of the first edition and survived with good grace this new assault on her
husband’s free time.

John Van de Vegte
Toronto, Canada
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Introduction and Linearized
Dynamic Models

1.1 INTRODUCTION

In the first part of this chapter, after a general introduction, the concepts of open-loop
and closed-loop control are discussed in the context of a water level control system.
This example is then used to introduce fundamental considerations in control system
analysis and design.

In the second part of the chapter, Laplace transforms are discussed and used to
define the transfer function of a system. This is a linearized model of the dynamic
behavior of the system that will serve as the basis for system analysis and design in
most of this book. Such transfer functions will be derived in the next chapter for
a variety of physical systems. In part to motivate this work, transfer functions
are used in this chapter to calculate transient responses for a number of systems,
including feedback control systems. Block diagram reduction is used to obtain the
transfer function of a system consisting of interconnected subsystems from those of
the subsystems.

1.2 EXAMPLES AND CLASSIFICATIONS OF CONTROL
SYSTEMS

Control systems exist in a virtually infinite variety, both in type of application and
level of sophistication. The heating system and the water heater in a house are
systems in which only the sign of the difference between desired and actual tem-
peratures is used for control. If the temperature drops below a set value, a constant



2 Introduction and Linearized Dynamic Models Chap. 1

heat source is switched on, to be switched off again when the temperature rises
above a set maximum. Variations of such relay or on-off control systems, sometimes
quite sophisticated, are very common in practice because of their relatively low cost.

In the nature of such control systems, the controlled variable will oscillate
continuously between maximum and minimum limits. For many applications this
control is not sufficiently smooth or accurate. In the power steering of a car, the
controlled variable or system output is the angle of the front wheels. It must follow
the system input, the angle of the steering wheel, as closely as possible but at a
much higher power level.

In the process industries, including refineries and chemical plants, there are
many temperatures and levels to be held to usually constant values in the presence of
various disturbances. Of an electrical power generation plant, controlled values
of voltage and frequency are outputs, but inside such a plant there are again many
temperatures, levels, pressures, and other variables to be controlled.

In aerospace, the control of aircraft, missiles, and satellites is an area of often
very advanced systems.

Kok kokk
One classification of control systems is the following:

1. Process control or regulator systems: The controlled variable, or output, must
be held as close as possible to a usually constant desired value, or input,
despite any disturbances.

2. Servomechanisms: The input varies and the output must be made to follow it as
closely as possible.

Power steering is one example of the second class, equivalent to systems for posi-
tioning control surfaces on aircraft. Automated manufacturing machinery, such as
numerically controlled machine tools, uses servos extensively for the control of posi-
tions or speeds.

This last example brings to mind the distinction between continuous and dis-
crete systems. The latter are inherent in the use of digital computers for control.

The classification into linear and nonlinear control systems should also be
mentioned at this point. Analysis and design are in general much simpler for the
former, to which most of this book is devoted. Yet most systems become nonlinear if
the variables move over wide enough ranges. The importance in practice of linear
techniques relies on linearization based on the assumption that the variables stay
close enough to a given operating point.

1.3 OPEN-LOOP CONTROL AND CLOSED-LOOP CONTROL

To introduce the subject, it is useful to consider an example. In Fig. 1.1, let it be
desired to maintain the actual water level ¢ in the tank as close as possible to a
desired level r. The desired level will be called the system input, and the actual level
the controlled variable or system output. Water flows from the tank via a valve V, and
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enters the tank from a supply via a control valve V,. The control valve is adjustable, ei-
ther manually or by some type of actuator. This may be an electric motor or a hydraulic
or pneumatic cylinder. Very often it would be a pneumatic diaphragm actuator,
indicated in Fig. 1.2. Increasing the pneumatic pressure above the diaphragm pushes
it down against a spring and increases valve opening.

Open-Loop Control

In this form of control, the valve is adjusted to make output ¢ equal to input r, but
not readjusted continually to keep the two equal. Open-loop control, with certain
safeguards added, is very common, for example, in the context of sequence control,
that is, guiding a process through a sequence of predetermined steps. However, for
systems such as the one at hand, this form of control will normally not yield high
performance. A difference between input and output, a system error ¢ = r — ¢
would be expected to develop, due to two major effects:

1. Disturbances acting on the system
2. Parameter variations of the system

These are prime motivations for the use of feedback control. For the example, pres-
sure variations upstream of V, and downstream of V, can be important disturbances
affecting inflow and outflow, and hence level. In a steel rolling mill, very large
disturbance torques act on the drive motors of the rolls when steel slabs enter or
leave, and these may affect speeds.

For the water level example, a sudden or gradual change of flow resistance of
the valves due to foreign matter or valve deposits represents a system parameter
variation. In a broader context, not only are the values of the parameters of a process
often not precisely known, but they may also change greatly with operating condition.

For an aircraft or a rocket, the effectiveness of control surfaces changes rapidly
as the device rises through the atmosphere. In an electrical power plant, parameter
values are different at 20% and 100% of full power. In a valve, the relation between
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pressure drop and flow rate is often nonlinear, and as a result the resistance parameter
of the valve changes with flow rate. Even if all parameter variations were known
precisely, it would be complex, say in the case of the level example, to schedule the
valve opening to follow time-varying desired levels.

Closed-Loop Control or Feedback Control

To improve performance, the operator could continuously readjust the valve based
on observation of the system error e. A feedback control system in effect automates
this action, as follows:

The output ¢ is measured continuously and fed back to be compared with the input r.
The error e = r — ¢ is used to adjust the control valve by means of an actuator.

The feedback loop causes the system to take corrective action if output ¢ (actual
level) deviates from input r (desired level), whatever the reason.

A broad class of systems can be represented by the block diagram shown in
Fig. 1.3. The sensor in Fig. 1.3 measures the output ¢ and, depending on type,
represents it by an electrical, pneumatic, or mechanical signal. The input r is
represented by a signal in the same form. The summing junction or error junction is
a device that combines the inputs to it according to the signs associated with the
arrows: ¢ = r — c.

It is important to recognize that if the control system is any good, the error e
will usually be small, ideally zero. Therefore, it is quite inadequate to operate an
actuator. A task of the controller is to amplify the error signal. The controller
output, however, will still be at a low power level. That is, voltage or pressure have
been raised but current or airflow are still small. The power amplifier raises power to
the levels needed for the actuator.

The plant or process in the level control example includes the valve characteristics
as well as the tank. In part this is related to the identification of a disturbance d in
Fig. 1.3 as an additional input to the block diagram. For the level control, d could
represent supply pressure variations upstream of the control valve.

Summing Disturbance
junction d

l

Input Error =
r e ant
Controller > ar!r)loﬁfgil;r 91 Actuator 3 or Output
+ - P process 9
Sensor

Figure 1.3 System block diagram.



