Lecture Notes in Mathematics

Henk Broer Igor Hoveijn
Gerton Lunter Gert Vegter

Bifurcations in

Hamiltonian Systems

Computing Singularities
by Grobner Bases

@ Springer



Henk Broer
Igor Hoveljn
Gerton Lunter
Gert Vegter

Bifurcations in
Hamiltonian Systems

Computing Singularities
by Grobner Bases

&) Springer



Authors

Henk Broer

Department of Mathematics
and Computing Sciences

University of Groningen

P.O. Box 800

9700 Groningen

The Netherlands

e-mail: broer@math.rug.nl
http://www.math.rug.nl/ broer

Igor Hoveijn

Department of Mathematics
and Computing Sciences

University of Groningen

P.O. Box 800

9700 Groningen

The Netherlands

e-mail: thoveijn@zonnet.nl

Cataloging-in-Publication Data applied for

Gerton Lunter
Department of Statistics
Oxford University

1 South Park Road
Oxford OX1 3TG

United Kingdom

e-mail: lunter@stats.ox.ac.uk
http://www.stats.ox.ac.uk/™ lunter

Gert Vegter

Department of Mathematics
and Computing Sciences

University of Groningen

P.O. Box 800

9700 Groningen

The Netherlands

e-mail: gert@math.rug.nl
http://www.cs.rug.nl/™ gert

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at http://dnb.ddb.de

Mathematics Subject Classification (2000): 58C27, 58F 14, 58136

ISSN 0075-8434

ISBN 3-540-00403-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer
Science + Business Media GmbH -

http://www.springer.de
(© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready TgX output by the author
SPIN: 10904428 41/3142/ du - 543210 - Printed on acid-Iree paper



Lecture Notes in Mathematics 1806

Editors:

J.-M. Morel, Cachan
E Takens, Groningen
B. Teissier, Paris



Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo



Preface

“How can anything a computer produces have to do
with chaos? [ thought computers were based on logic.”

Inspector Morse, in response to an
ezplanation of the Mandelbrot fractal.

This book deals with nonlinear Hamiltonian systems, depending on parameters.
Such systems occur for example in the modeling of frictionless mechanics and
optics. The general goal is to understand their dynamics in a qualitative, and if
possible, also quantitative way. The dynamical behavior generally is expressed in
terms of equilibria, periodic and quasi periodic solutions as well as correspond-
ing homo- and heteroclinic connections between those. Such connections often
are accompanied by chaotic dynamics. In many important cases, it is possible
to reduce a skeleton of the dynamics to lower dimensions, sometimes leading
to a Hamiltonian system in one degree of freedom. Such reduced systems allow
a singularity theory or catastrophe theory approach which gives rise to trans-
parent, in a sense polynomial, normal forms. Moreover the whole process of
arriving at these normal forms is algorithmic. The purpose of this book is to
develop computer-algebraic tools for the implementation of these algorithms,
which involves Grébner basis techniques. This set-up allows for many applica-
tions concerning resonances in coupled or driven oscillators, the n-body problem,
the dynamics of the rigid body, etc. in Hamiltonian mechanics. A version of the
spring-pendulum is used as a test case.

The present work appeared earlier as the PhD thesis [Lun99a] of Gerton
Lunter, written under supervision of Henk Broer and Gert Vegter.

Background

General background of this work is the theory of nonlinear Dynamical Systems
as it has evolved since Poincaré [Poi87]. A main aspect of this development
is that the 19th century programme of the explicit analytic computation of
individual evolutions (solutions) largely has broken down. Indeed, since then
the emphasis has shifted to considering the whole phase space as it contains all
possible evolutions, in simple cases expressed by devices like phase portraits.
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More generally, increasing importance was given to the study of geometric
objects like tori and stable or unstable manifolds, and their relative positions in
phase space with respect to each other, periodic evolutions, and equilibria.

Another development was that the interest moved away from individual sys-
tems, and towards the study of dynamical properties that are persistent for small
perturbations of the given system, compare the treatment of the term ‘genericity’
by Smale [Sma67] in the 1960s. Parallel to this development is the introduction
of parameters into dynamical systems, so as to effect deformations or unfoldings
of these in a systematic way, compare Thom [Tho72], also see Arnold [Arn88|.

Summarizing one could say that during one century, the emphasis in dynamical
systems shifted from the explicit analytic computation of a given evolution to the
consideration of generic properties of families of dynamical systems deforming a
given one, where the methods became more geometric and qualitative.

In a parallel development, during the past 50 years the electronic computer
became increasingly important for studying concrete dynamical systems, possi-
bly depending on parameters. On the one hand we saw visualization of phase
portraits, chaos, invariant manifolds, bifurcation diagrams, etc., while on the
other hand also the computation of underlying dynamical characteristics like
normal form coefficients, dimensions, Lyapunov exponents, power spectra, etc.,
became possible. Here, apart from purely numerical computations, also symbolic
computations and computer algebra plays a role.

The present book is focused on various forms of normal form computations,
which are deeply involved with computer algebra. We restrict to the Hamiltonian
context, where moreover the systems can be approximated by those admitting
a reduction to one degree of freedom. Therefore, apart from the approximation
aspect, we are back in the paradise of the 19th century. The one degree of
freedom reduction supports the coherent dynamics of the original model, while
it also provides a skeleton for the chaos.

By this combination of geometric and algebraic methods, the quantitative
element resurfaces: the geometric descriptions can be traced in detail to the
original physical model equations.

Formal normal forms, a perturbation problem

Several methods exist by which dynamical systems can be reduced to lower
dimensions. One standard way is by restricting.the system to an invariant mani-
fold, like a center manifold. Factoring out symmetry is another way to reduce the
phase space. In the Hamiltonian context this also is the classical approach, since
symmetry by Noether’s theorem [Arn89] is related to the existence of (first) in-
tegrals and therefore conservation laws. A textbook example of this is the Kepler
problem, where rotational symmetry thus leads to the conservation of angular
momentum and a cyclic variable, which allows reduction to one degree of free-
dom. In this example the symmetry group is the circle or a 1-torus. In many
applications the symmetry group is a higher dimensional torus. .
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In the present Hamiltonian context we concentrate on reduction by symmetry.
Within the class of general Hamiltonian systems, those that admit a symme-
try group like an n-torus, are highly degenerate: in other words, having such
a torus symmetry is not a generic property. Nevertheless, the theory of formal
normal forms near certain equilibria or (quasi-) periodic orbits admits the local
approximation of the given system by a symmetric one. This method of simpli-
fying formal series goes back to Poincaré and Birkhoff [Poi28, Bir50] also see
Gustafson [Gus66]. For general information, see e.g. Arnold [Arn89, Arn88].

To be somewhat more precise, if the original vector field is denoted by X.
where for the moment parameter dependence is suppressed, then the present
normal form theory asks for a canonical transformation @, such that

Here N is the normalized, symmetric part, that describes the slow dynamics
after factoring out the symmetry, while R is the small remainder term. In this
way the study of the dynamical system is divided into two parts. The first
is to understand the symmetric approximation N and the second to take the
perturbation R into account. Since this book will be entirely devoted to the
former of these two problems, we just give a few remarks about the latter, e.g..
see Broer and Takens [BT89]. Indeed, in this setting the occurrence of separatrix
splitting as associated to chaos, is a flat phenomenon. One could say that the
approximation N contains the regular skeleton supporting the chaotic zones ol
instability.

Remarks

- The expression @,(X) = N+ R is reminiscent to the division algorithm. Below
this fact will be elaborated further in the context of Grobner basis techniques
[CLO92].

- Concerning regularity, our context mainly is assumed to be C°°. However, if
one restricts to the real analytic C“ case, the remainder term R can be esti-
mated in an appropriate exponential way. Compare Neishtadt [Nei84, BRS96,
BRO1].

Singularity and Catastrophe Theory, polynomial normal
forms .

In many examples factoring out the symmetry leads to Hamiltonian systems in
one degree of freedom where the dynamics largely is determined by the level
curves of the corresponding Hamilton functions. The presence of parameters
in the original problem so brings us in the setting of families of real functions
in dimension 2. Since the reduced phase space is 2-dimensional, in a further
simplification process we may abstain from symplecticity of the transformations,
since this only affects the time parametrization of the dynamics and not the level
curves of the functions. Now singularity and catastrophe theory normal forms
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can be computed, which to a large extent are polynomial. For a general reference,
e.g., see Thom [Tho72], Brocker and Lander [BL75].

Regarding the reduction to one degree of freedom Hamiltonian systems, we
have selected two different approaches. The first of these is the planar reduction
method, compare Broer and Vegter et al. [BV92, BCKV93, BCKV95], compara-
ble to the classical Keplerian reduction. It is to be noted that the formal integrals
obtained after the formal normalization show up as distinguished parameters in
the singularity theory. The second approach concerns the energy-momentum
map, compare Duistermaat [Dui84], Van der Meer [Mee85], Cushman and Bates
[CB97]. Also see [BHLV98]. Both methods, after a formal normal form, reduce
to one degree of freedom Hamiltonian systems after which singularity theory is
used. As said before, here further simplifying transformation are applied. In the
former case this leads to so-called right equivalences and in the latter to left-right
equivalences.

The most interesting cases contain rather strong resonances, which also gives
discrete symmetries in the normal form. Furthermore, certain discrete symme-
tries are considered that are a priori to the original physical problem, such as
time reversibility.

For general background on the use of singularity and catastrophe theory to dy-
namical systems, frequently using contact equivalence, see Golubitsky, Schaeffer,
Stewart and Marsden [GS85, GSS88, GMSD95]. In these references, as well as
in Wassermann [Was75], also distinguished parameters play a role. However, in
view of the special nature of the distinguished parameters, which are nonnegative
action variables, a new unfolding theory was developed in [BCKV93]. For general
background also see Damon [Dam84, Dam88, Dam95] and Montaldi [Mon91].

Algorithms, setting of the problem

An elementary observation is that, without the help of computers, the compu-
tations mentioned so far can not be extended to the level that is of interest for
serious applications. A good example of this in the dissipative setting is given
by Marsden and McCracken [MM76]. Fortunately the proofs involved here are
highly constructive and lead to algorithms that can easily be implemented on
computers.

The algorithm of formal normal forms already has been widely implemented
on computers. In the Netherlands e.g. the Dynamical Systems Laboratory at
the CWI Amsterdam has been active in this, unifying the process and making
it more sophisticated. The singularity theory normal form also is algorithmic in
nature. See Kas and Schlessinger [KS72]. Here, however, implementation largely
was lacking, while the complication of practical computations renders the use of
computers essential. As indicated before, this program is deeply involved with
computer algebra, in particular with Grobner basis techniques [CLO92]. It turns
out that the methods of planar reduction and the energy-momentum map may
be formalized in a unified way with help of standard bases. A recent reference in
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this direction of applying computational algebra to dynamical systems is Gater-
mann [Gat00].

One of the key ideas is to keep track of all normalizing transformations,
which makes it possible to translate the mathematical conclusions back into the
original physical context of the model. This task is effectively carried out for a
mechanical example. In that sense, key aspects of the qualitative model are made
quantitative. For a general reference on the application of computer algebraic
methods in perturbation theory see Rand and Armbruster [RA87].

The scope and beyond

Extension of the research at hand can be pursued in the following directions.
As introductory reduction algorithms also the Liapunov-Schmidt or the Moser—
Weinstein method, as well as the restriction to center manifolds, may be taken
into consideration. After this again a singularity and catastrophe theory ap-
proach seems feasible. Again compare [GMSD95]. Moreover, combinations of
these approaches are of importance.

Another option is to incorporate the work of Hummel [Hum?79|, who in-
vestigates periodic points of diffeomorphisms by contact equivalence. Also here
discrete symmetries are essential. For earlier, theoretical results compare Takens
[Tak74a] and see [GS85, GSS88, GMSD95, BGV02].

Also at the level of concrete applications and case studies many extensions are
possible, beyond the present case study of a spring pendulum and the resonances
considered here. We just mention mechanical examples like driven or coupled
oscillators (compare, e.g., [TRVNO00]), the rigid body, etc. For earlier work in
this direction compare, [Han95a, Han95b, Hov92, BHvN98, BHvNV99]. Also
see [Lun99a, Lun99b]. Moreover, the research at hand forms the beginning of a
theoretical basis for the future development of a coherent set (package or library)
of computer programs, suitable for further use.

A further development that may be of great importance is the combination of
computer algebraic and numerical means, compare Simé [Sim89]. In this way it
becomes possible to be more efficient in dealing with the constants, parameters
and transformations, only keeping track of essential things. Another aspect is
the computation and visualization of invariant manifolds, e.g., compare Vegter

et al., [HOV95, BOV97].
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1 Introduction’

Our concern is with Hamiltonian systems that by symmetry are reducible to one
degree of freedom (or at least reducible to a large approximation). As a concrete
example and as a case study for our approach we often consider a model for
the spring-pendulum near one of its stronger resonances. For motivation and
background the reader is referred to our extensive preface.

Focusing down further, we shall formulate the main goal of the present book.
After reduction of the (approximating) Hamiltonian system by symmetry, we
apply singularity theory to obtain transparent normal forms for the dynamical
skeleton. For this we need coordinate transformations and reparametrizations,
all of which can be obtained in an algorithmic way. It is our purpose to de-
velop computer algebraic methods for this. Therefore, the emphasis lies on the
algorithmic methods, especially in later chapters.

The earlier chapters are dealing with the translation between the context of
dynamical systems on the one hand and that of the computer algebraic imple-
mentation of the singularity theory algorithms on the other hand.

Two reduction methods have been selected. These methods, dubbed the pla-
nar reduction [BCKV93| and energy-momentum map [Cus83, Dui84, Mee85]
methods, both apply Birkhoff normal form transformation to obtain an (approx-
imate) system with symmetry, and then proceed with reduction to a one degree
of freedom system, in different ways. Algorithms for computing the reparametri-
zations involved are developed in chapter 4 onwards, and find application in both
reduction methods in chapters 2 and 3. The algorithmic approach also enabled
us to compute nondegeneracy conditions. Some of these were already found in
[Dui84], also see [GMSD95], whereas certain others are rather hard to find by
paper-and-pencil calculations.

As a byproduct of developing these algorithms we gain a deeper insight in the
two reduction methods. Both methods are applied (and tested) on the concrete
example of the spring—pendulum in a few strong resonances close to equilibrium.
This enables us to make comparisons between the two methods, concerning their
applicability and the strength of their dynamical conclusions. See Sect. 1.2 for a
discussion.

Partly summarizing, we mention that the key ideas for making the planar
reduction method algorithmic, and hence constructive, with suitable changes,
are also applicable to the energy—momentum map method. In fact, this led to a
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unifying approach to both methods, presented in chapters 6 and 7. The relevant
notion for this unification is the standard basis, which deepened the understand-
ing of the algorithms, and facilitated their derivation. Indeed, standard bases,
and the Grobner bases of which they are a generalization, prove to fit several
ideas from both methods in a rather unexpected way.

1.1 A further setting of the problem

In this section, we explain the two reduction methods considered, by applying
them to a simple two degree-of-freedom system. Our goal of explicitly comput-
ing coordinate transformations and reparametrizations, boils down to solving
the so-called infinitesimal stability equation. In the context of polynomial rings,
an efficient procedure based on Grébner bases solves this equation. The two
reduction methods motivate two different generalizations of this idea, leading
standard bases.

1.1.1 The planar reduction method

The starting point is an article by Broer, Chow, Kim and Vegter [BCKV93],
in which a two-step reduction method is used to find a polynomial model for
a certain class of Hamiltonian dynamical systems. The reduction starts with a
Birkhoff normalization. The resulting near S! symmetry then is used to reduce
to a planar one-degree-of-freedom system. Subsequently, right-equivalences (i.e.,
planar coordinate changes that are not necessarily symplectic) are used to find
a polynomial and versal model system. Both steps are qualitative, in the sense
explained above. On the one hand, to pull quantitative information through the
Birkhoff normalization is feasible, as it was long known how to compute the
associated (symplectic) conjugacy explicitly. On the other hand, for the versal
deformation such explicit computations were, to our knowledge, not done before.

As said earlier, our aim is to see how much quantitative information about
the original dynamical system could be mustered by computing the conjugacies
along the lines of the planar reduction method. This program was presented in
[BLV98| and carried out in detail in [BHLV98].

We now illustrate the planar reduction method by a simple example; for
more details see [BCKV93, BCKV95]. Suppose we have a Hamiltonian living
on R* with a degenerate quadratic part, whose Hessian has corank 1. Then
after Birkhoff normalization, truncation, and suitable time-reparametrizations,
generically the following normal form results:

1 1 1
=@ +9]) + 5 + 223 + 9 (32 +9D), 72, 02)

1- ——
( 1) H(Ilvylvm'Z,yz) B} 5 3

with g containing all terms of degree 4 and higher. This system has an S!-
symmetry (which is exact due to the truncation): rotation in the r;,y;-plane.



