J. Gmehling

U. Onken

U. Weidlich

VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION

Organic Hydroxy Compounds:
Alcohols and Phenols
(Supplement 2)

Chemistry Data Series

Vol. I, Part 2d

J. Gmehling U. Onken U. Weidlich

VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION

Organic Hydroxy Compounds: Alcohols and Phenols (Supplement 2)

Chemistry Data Series

Vol. I, Part 2d

Published by DECHEMA
Deutsche Gesellschaft für Chemisches Apparatewesen
Editors: Dieter Behrens, Reiner Eckermann

6000 Frankfurt/Main, Federal Republic of	Germany		
ISBN 3-921 567-43-2			
All rights reserved			
No part of this work may be reproduced or electronic, or mechanical, including photo storage and retrieval systems — without w	copying, recording	, or taping, or infor	raphic, rmation

Printed by Schön & Wetzel GmbH, Frankfurt/Main, F. R. Germany

© 1982 DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen

Organic Hydroxy Compounds: Alcohols and Phenols (Supplement 2)

Systems with: alev8 amsgr0-zucaupA

Allyl alcohol Benzyl alcohol 1.4-Butanediol 1-Butanol 2-Butanol tert-Butanol 2-Butoxyethanol p-tert-Butylphenol 2-Butyne-1.4-diol Cyclohexanol Cyclopentanol 1-Decanol Diethylene glycol

2-Dimethylaminoethanol 2,4-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol Dipropylene glycol 1-Dodecanol

2.3-Epoxy-1-propanol 1.2-Ethanediol 2-Ethoxyethanol 3-Ethyl-3-pentanol Furfuryl alcohol Guaiacol

1.1.1.3.3,3-Hexafluoro-2-propanol 1-Hexanol

p-Isopropylphenol 2-Methoxyethanol

2-Methyl-1-butanol 3-Methyl-1-butanol 2-Methyl-1-buten-3-ol 2-Methyl-1-hexanol 2-Methyl-2,4-pentanediol 2-Methyl-3-pentanol 4-Methyl-2-pentanol 2-Methylphenol 3-Methylphenol 4-Methylphenol 2-Methyl-1-propanol

p-Nitrophenol 1-Nonanol 1-Octanol 2-Octanol 3-Octanol 4-Octanol nucomo o medio pris 1-Pentanol

2-Pentanol 3-Pentanol tert-Pentanol Phenol

α-Phenylethanol 1,2-Propanediol 2-Propanol

2,2,3,3-Tetrafluoro-1-propanol Tetrahydrofurfuryl alcohol 1-Undecanol

SUBJECTS OF VOLUME I

The table lists the parts of Volume I already published or being in preparation.

Subtitle	Vol. I, Part		
Aqueous-Organic Systems Supplement 1	1 1a	published	
Organic Hydroxy Compounds	14	published	
Alcohols	0-	a dell'atam	
	2a	published	
Alcohols and Phenols	2b	published	
Supplement 1	2c	published	
Supplement 2	2d	published	
Aldehydes, Ketones, Ethers	3/4	published	
Carboxylic Acids, Anhydrides, Esters	5	in prep.	
Aliphatic Hydrocarbons	6a	published	
	6b	published	
Supplement 1	6c	in prep.	
Aromatic Hydrocarbons	7	published	
Halogen, Nitrogen, Sulfur	onerg		
and other Compounds	8	in prep.	

AUTHORS' PREFACE

This part 2d is the third supplement of our Vapor-Liquid Equilibrium Data Collection. These supplements contain mainly data published after completion of the respective volume. Besides, older data from sources not accessible to us before have been included at this occasion. Likewise the supplements additionally contain so-called incomplete x-y data at constant temperature without experimental data for the pressure. Finally, coming to the so-called recommended values for the constants of Wilson, NRTL, and UNIQUAC equations (see Guide to Tables, p. XXVI), it should be remembered, that these are given from part 3/4 onwards. In the supplements 1a, 2c, and 2d we therefore have included recommended values for systems of parts 1, 2a, and 2b. In some cases, especially for systems with large mixing enthalpies, fitting could be improved by using a linear relationship with temperature for the parameters; otherwise, recommended parameters are given as independent on temperature.

A considerable part of the preparation of this supplement has been done by Dipl.-Chem. U. Weidlich, who had already assisted us in the work for the last two supplements; he has therefore joined us now as co-author. On the other hand, Dr. W. Arlt who had been with us for more than seven years, has left our group last year and joined the Bayer AG (Leverkusen). He will of course continue to co-operate with us and co-author part 8.

On this occasion we should like to thank once more to all colleagues, especially to Prof. Dr. M. T. Rätzsch (T.H. Leuna-Merseburg), who have transmitted experimental VLE data from their laboratories to us by sending reprints.

Again we should like to recall that our data collection is the result of the diligent and devoted work of many people at the University of Dortmund. The following persons have contributed to this volume: Mrs. A. Brunk, Dipl.-Ing. P. Grenzheuser, Dipl.-Ing. B. Kolbe, Mrs. L. Kunzner, cand.-chem. J. Menke, Dr. G. Nocon, Mrs. G. Obermann, and Dipl.-Chem. U. Schwaitzer from our team, and Mr. T. Blaszyk from the computer center.

Dortmund, February 1982

Ulfert Onken Jürgen Gmehling Ulrich Weidlich

PREFACE OF EDITORS

Subjects of the Dechema Chemistry Data Series are the physical and thermodynamic property data of chemical compounds and mixtures essentially for the fluid state covering PVT data, heat capacity, enthalpy, and entropy data, phase equilibrium data, transport and interfacial tension data.

The main purpose is to provide chemists and engineers with data for process design and development. For computer based calculations in process design appropriate correlation methods and accurate data must be used. These are only in some cases available in the open literature. For that reason the most urgent requirement regarding the publication of data is to offer classified and critically evaluated data, thus giving an impression which of them are reliable or not. This will be the goal of the series.

DECHEMA gives the opportunity to authors especially from universities to publish not only their theoretical results, but also their measured or compiled data, most often a large amount, that would otherwise never have been published.

The research work of Dr. Gmehling, Prof. Onken and Dipl.-Chem. Arlt on vapor-liquid equilibria which was partly supported by the Federal Ministry of Research and Technology and DECHEMA has been very fruitful; in particular, it led to an extension of the UNIFAC method. The authors have produced what is probably the largest collection of vapor-liquid equilibrium data that is today available with evaluation programs and experimental data.

We present the evaluation of this material in several parts of the first volume of the series. We hope that this gives particularly the users an instrument that will allow them to solve their problems considerably more easily and quickly than before.

Frankfurt/Main, February 1982 mend-loid bas ansamed 0.0 at M. accorded

Dieter Behrens Reiner Eckermann

GUIDE TO TABLES

1. Order of Succession of Systems of Data Sets.

- 1.1 In this part binary, ternary, and quaternary systems with alcohols and phenols are given.
- 1.2 Within each class of mixtures all binary systems are given first, followed by ternary and quaternary systems.
- 1.3 The sequence of systems is based on the empirical formula convention used in the index of Chemical Abstracts, which means arranging the compounds according to increasing C and H, with the remaining elements in alphabetical order: Br, Cl, F, I, N, O, S. Compounds with identical empirical formula are arranged alphabetically according to their names.
- 1.4 Order of succession for different data sets for a given system (a set of data points, taken from one original paper, which have been measured varying the composition at constant temperature or pressure, is referred to as a data set):
- 1. Name of first author in alphabetical order.
 - 2. isothermal data sets, with increasing temperature,
 - 3. isobaric data sets, with increasing pressure,
 - 4. recommended values (see section 7).

2. Antoine Vapor Pressure Equation

The Antoine vapor pressure equation is used in the following form:

$$log[p_i^0] = A - \frac{B}{t + C} \tag{70}$$

with [pi] vapor pressure of pure component i in mm Hg
t temperature in degrees Celsius (°C)

The Antoine constants A, B, and C are given with respective temperature regions (in $^{\circ}$ C).

If pure component vapor pressures are given together with the VLE data in the original paper, the first Antoine constant A is fitted to these data with the two other Antoine constants B and C being taken from our data files for pure compounds, as explained in the General Remarks and Explanations (part 1, p. XXXIX). If the Antoine constant A has been fitted in this way, it is given at the bottom of the respective table, using the symbol A'.

3. Consistency Tests

Method 1: Point test of Van Ness et al. [5] in the version of Fredenslund et al. [1].

Method 2: Integral or area test of Redlich - Kister [4] and Herington [2, 3].

Meaning of symbols (see also Table 1):

+ consistent

not consistent

blank no result

For more detailed information see sections 2.3 (p. XXII to XXIX) and 4.2 (p. XXXVIII to XLIII) of General Remarks and Explanations in Part 1 of this volume.

4. Parameters of Activity Coefficient Equations

Parameters for the following equations are given:

Margules, eq. (28)
van Laar, eq. (29)
Wilson, eqs. (30) and (36)
NRTL, eqs. (31) and (37)

UNIQUAC, eqs. (32) to (35) and (38) to (40)

Equations and parameters are given in **Tables 2** to **4** and in Tables 1 to 4 of General Remarks and Explanations, (p. XVI to XXI), Part 1.

For ternary systems, only Wilson, NRTL, and UNIQUAC parameters are given; for systems with more than three components no parameters of activity coefficient equations are given.

For notation of constants of activity coefficient equations see Table 2.

Wilson, NRTL, and UNIQUAC parameters are given in cal/mol with the gas constant R = 1.98721 cal/mol K and the temperature T in K.

Note: In Volume V of the DECHEMA Chemistry Data Series (Liquid-Liquid Equilibria [11]), parameters are given in K.

Data for the pure liquid components, which are required for the Wilson equation (molar volume V_i^L) and UNIQUAC equation (volume parameter r_i and area parameter q_i), are given in Appendix A.

5. Vapor - Liquid Equilibrium Data

5.1 Experimental data

Symbol	Meaning
PMMHG	pressure in mm Hg
T DEG C	temperature in °C (degrees Celsius)
X1 (X2)	liquid mole fraction $x_1 (x_1)$
Y1 (Y2)	vapor mole fraction y ₂ (y ₂)

Table 1 Thermodynamic Consistency Tests

Character in the table	Method 1 Van Ness et al. [5] and Fredenslund et al. [1]	Method 2 Redlich-Kister [4] and Herington [2,3]
+ MB4 (ed)	$\Delta y \leq 0.01^{-1}$	isothermal data: D \leq 10% ²) isobaric data: (D-J) \leq 10% ³) exception: for nearly ideal systems with 0.95 $< \gamma <$ 1.10
(not consistent)	$\overline{\Delta \gamma} > 0.01$ ¹)	given. given all γ_i) method 2 is not employed, but character + is given. either a) isothermal data: D > 10% 2) isobaric data: (D-J) > 10% 3)
		or b) maximum deviation in $\ln\frac{\gamma_1}{\gamma_2}$ considering the maximum deviation in the specific mental data point $>$ 1.17 fold mean deviation
blank (no result)	calculation does not converge	a) less than 5 data points in the set b) interpolation polynomial does not intersect x-axis ⁴)
1) Δy mean $\Delta y = y_{exp}$ 2) D = $\frac{ A' }{A'}$	mean deviation in vapor mole fraction y $= y_{exp} - y_{calc}$ $= \frac{ A' - B' }{A' + B'} \cdot 100 [\%]$	 3) J = 150 · \frac{\lambda \times \mathbb{I}}{\times \min} \begin{bmases} \[\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Table 2 Activity Coefficient Equations for Binary Systems and Notation of Parameters*)

Type of Equation	Parameters	$\ln \gamma_1 = \frac{1}{1000}$	Notation of Para- meters in Data Sheet
Margules [6]	A ₁₂	$[A_{12} + 2(A_{21} - A_{12}) \times_{1}^{1}] \times_{2}^{2}$ $[A_{21} + 2(A_{12} - A_{21}) \times_{2}^{1}] \times_{1}^{2}$ (28a)	A 12 A 21
van Laar [7]	A ₁₂	$A_{12} \left(\frac{A_{21} x_2}{A_{12} x_1 + A_{21} x_2} \right)^2 $ $A_{21} \left(\frac{A_{12} x_1}{A_{12} x_1 + A_{21} x_2} \right)^2 $ (29b)	A 12 A 21
Wilson [8]	$\lambda_{12} - \lambda_{11}^{-1}$ $\lambda_{21} - \lambda_{22}$	$-\ln(x_1 + \Lambda_{12}x_2) + x_2 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right) (30a)$ $-\ln(x_2 + \Lambda_{21}x_1) - x_1 \left(\frac{\Lambda_{12}}{x_1 + \Lambda_{12}x_2} - \frac{\Lambda_{21}}{\Lambda_{21}x_1 + x_2} \right) (30b)$	A 12 A 21
NRTL [9]	$g_{12} - g_{22} ^{2})$ $g_{21} - g_{11}$ α_{12}		A 12 A 21 ALPHA 12

Table 2 (continued)

Notation of Para- meters in Data Sheet	A 12						
- w	(32a)		ï× A.				
$\ln \gamma_1 = \\ \ln \gamma_2 =$	7 ₁ 3)	$\Lambda_{21} = \frac{V_1^L}{V_2^L} \exp{-\frac{\lambda_{21} - \lambda_{22}}{RT}}$	molar volume of pure liquid component i. For values of V_i^L see Appendix A. interaction energy between components i and $j-\lambda_{ij}=\lambda_{ji}$	$\tau_{21} = \frac{9_{21} - 9_{11}}{RT}$	= exp $(-\alpha_{12}\tau_{12})$ $G_{21} = \exp(-\alpha_{21}\tau_{21})$ parameter for interaction between components i and j; $g_{ij} = g_{ji}$		Wilson, NRTL, and UNIQUAC parameters are given in cal/mol with the gas
Parameters	u_{22} 3) $\ln \gamma_1^C + \ln \gamma_1^R$ 3) u_{11} $\ln \gamma_2^C + \ln \gamma_2^R$	$\lambda_{12} - \lambda_{11}$ RT	molar volume of pure liquid component i. For values of interaction energy between components i and $j-\lambda_{ij}=\lambda_{ji}$		iteraction between com	nonrandomness parameter; $\alpha_{ij} = \alpha_{ji}$ tailed equations see table 4	Wilson, NRTL, and UNIQUAC parameters are given in cal/mo
Parar	0)	V_2^L exp - V_1^L	molar volume o	$= \frac{9_{12} - 9_{22}}{RT}$	= $\exp(-\alpha_{12}\tau_{12})$ parameter for in	α_{ij} nonrandomness parameter; for detailed equations see table 4	n, NRTL, and Ul
Type of Equation	UNIQUAC [10]	1) $\Lambda_{12} =$	V.	2) 712	G ₁₂ Sou [8] —	Aspen α_{ij} (2) For de	*) Wilsor

Table 3 Activity Coefficient Equations for Multicomponent Systems

Type of Equation	Parameters	$\ln \gamma_i =$	
Wilson [8] *)	$\Lambda_{ij} = \frac{V_{i-}^{L}}{V_{i-}^{L}} \exp - \left[\frac{(\lambda_{ij} - \lambda_{ii})}{RT} \right] $ 1)	$-\ln\left(\sum_{j=1}^{m} x_{j} \Lambda_{ij}\right) + 1 - \sum_{k=1}^{m} \frac{x_{k} \Lambda_{ki}}{\sum_{j} x_{j} \Lambda_{kj}} $ 1)	(36)
5	$\Lambda_{ii} = \Lambda_{jj} = 1$	7 = 7	
NRTL [9]	$\tau_{ji} = \frac{(g_{ji} - g_{ii})}{RT}$	$\sum_{j=1}^{m} \tau_{ji} G_{ji} x_{j} + \sum_{i=1}^{m} \frac{x_{j} G_{jj}}{m} \left(\tau_{ij} - \sum_{n=1}^{m} x_{n} \tau_{nj} G_{nj} \right)$	(37)
- A A	$G_{ji} = \exp(-\alpha_{ji}T_{ji})$	$\sum_{i=1}^{n} G_{ii}x_{i} \qquad \sum_{l=1}^{n-1} G_{ij}x_{l} \qquad \sum_{l=1}^{n} G_$	
	$\tau_{ii} = \tau_{jj} = 0$	0.35 (35.1), VSJ	
DIVIDUAC (10)	G., = G.j = 1000 - 1000	SEA (1883) 14 PER	
UNIQUAC [10] *)		In $\gamma_i^c + \ln \gamma_i^R$ Morsipu otbs	(38)
(continued)			

sm	(39)	(40)	(32)	UNICUAC Activity Coefficient Eq.	

				1 on + 2 of -	
				$= \frac{1}{16} + 1 \left(\frac{1}{16} + $	
	×	B _K T _{Kj}			
	x &	S IT ij	z = 10	"conia Tenta	
	+	= - = - = - = - = - = - = = - = = = = =		$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} +$	
	2 q ln 8	N	- F	a. In (Birner Bs) + Bios (Birn	
	× 6 + 2 ×	$\left[1-\ln\left(\sum_{j=1}^{m}\vartheta_{j}\tau_{jj}\right)-\right.$	$I_{i} = \frac{2}{2} (r_{i} - q_{i}) = (r_{i} - 1)$	$(1-\gamma) = (\rho - \gamma)\frac{2}{5}$	
	11	$\ln \gamma_i^R = q_i$	(r _i – 0	2.5	
	In γ_i^c	ln γ _i	1 2 2 2	(3E) germana est	
				pres parameter et component l- ")	
				volume businesses a second of 50 6 2	
	137			A A Table A A A A A A A A A A A A A A A A A A A	
				xibr xibr aritim unitre prons	
				inote e 4 pper	
				footi footi table	
		11		S S S S S S S S S S S S S S S S S S S	
		$\tau_{\rm ii} = \tau_{\rm jj}$		nbols nbols nbols	
(per				1) explanation of symbols see footnote 1 of table 2 2) explanation of symbols see footnote 2 of table 2 3) explanation of symbols see table 4 ** *) For values of V'_, r_, and q_, see Appendix A **	
ntin				ation attion attion	
(00				see a spire 3	
Table 3 (continued)				exp exp exp For	
able				(* 3) (5) 1	
F					

Table 4 UNIQUAC Activity Coefficient Equations [10] for Binary Systems

$$\ln \gamma_1 = \ln \gamma_1^{\mathsf{C}} + \ln \gamma_1^{\mathsf{R}} \tag{32a}$$

$$\ln \gamma_1^{C} = \ln \frac{\varphi_1}{x_1} + \frac{z}{2} q_1 \ln \frac{\vartheta_1}{\varphi_1} + \varphi_2 \left(|| -\frac{r_1}{r_2} || || || \right)$$
 (33a)

$$\ln \gamma_1^{\mathsf{R}} = -\mathsf{q}_1 \ln \left(\vartheta_1 + \vartheta_2 \tau_{21}\right) + \vartheta_2 \mathsf{q}_1 \left(\frac{\tau_{21}}{\vartheta_1 + \vartheta_2 \tau_{21}} - \frac{\tau_{12}}{\vartheta_1 \tau_{12} + \vartheta_2}\right) \tag{34a}$$

$$\ln \gamma_2 = \ln \gamma_2^{\rm C} + \ln \gamma_2^{\rm R} \tag{32b}$$

$$\ln \gamma_2^{C} = \ln \frac{\varphi_2}{x_2} + \frac{z}{2} q_2 \ln \frac{\vartheta_2}{\varphi_2} + \varphi_1 \left(l_2 - \frac{r_2}{r_1} l_1 \right)$$
 (33b)

$$\ln \gamma_2^{\mathsf{R}} = -\mathsf{q}_2 \ln \left(\vartheta_1 \tau_{12} + \vartheta_2\right) + \vartheta_1 \mathsf{q}_2 \left(\frac{\tau_{12}}{\vartheta_1 \tau_{12} + \vartheta_2} - \frac{\tau_{21}}{\vartheta_1 + \vartheta_2 \tau_{21}}\right) \tag{34b}$$

$$l_i = \frac{z}{2}(r_i - q_i) - (r_i - 1)$$
 $z = 10^{\circ}$ (35)

Symbols

l, see equation (35)

q; area parameter of component i *)

r; volume parameter of component i *)

 u_{ij} Parameter of interaction between components i and j; $u_{ij} = u_{ji}$

z coordination number

 γ_i^c combinatorial part of activity coefficient of component i

 γ_i^R residual part of activity coefficient of component i

$$\vartheta_i = \frac{q_i x_i}{\sum_j q_j x_j}$$
 area fraction of component i

$$\varphi_i = \frac{r_i x_i}{\sum_i r_j x_j}$$
 volume fraction of component i

 τ_{ii} see Table 3

*) For values of r; and q; see Appendix A

5.2 Calculated data

Symbol	Meaning	
DIFF P	$P = P_{exp} - P_{calc}$	
DIFFT	$T = T_{exp} - T_{calc}$	
DIFF Y1	$y_1 = y_{1, exp} - y_{1, c}$	
DIFF Y2	$y_2 = y_{2,exp} - y_{2,c}$	

MEAN DEVIATION e.g. for T:
$$\triangle T = \frac{1}{n} \sum |\triangle T|$$

MAX. DEVIATION maximum absolute deviation

Results of calculations with activity coefficient equations are usually tabulated as the difference of experimental value minus calculated value. Calculated vapor mole fractions are given directly only for isothermal P-x data and isobaric T-x data. In all other cases the calculated values are obtained by subtracting the tabulated difference from the experimental value, e.g. $y_{1, calc} = y_{1, cap} - \Delta y_1$.

6. Equilibrium Diagrams

6.1 Binary Systems

For complete data sets and for isothermal x - y data, x - y diagrams show data points and equilibrium line calculated by activity coefficient equation yielding the lowest mean deviation Δy_1 . For sets of data without experimental vapor compositions y (isothermal P-x data and isobaric T-x data), the equilibrium line from the equation showing the best fit (lowest mean ΔP or ΔT , for isothermal and isobaric data respectively) is plotted. The type of this equation is printed on the diagram, together with the values for the activity coefficients at infinite dilution γ_1^∞ and γ_2^∞ (for equations see Table 3 of General Remarks and Explanations, p. XIX of Part 1).

In the case of limited liquid miscibility, calculated solubilities (which may be different from experimental values!), are inserted into the equilibrium line as small circles connected by a horizontal line.

6.2 Ternary Systems

Triangular diagrams show experimental data points with equilibrium composition of vapor (sign *) and liquid (sign O) connected by a straight line.

7. Recommended Values

Additionally, for systems with at least two data sets fulfilling both the point and the integral test for thermodynamic consistency (method 1 and 2, see section 3), so-called recommended values are given for the constants of the Wilson, NRTL, and UNIQUAC equation. In the evaluation of these parameters for a given system, only those data sets were used which showed consistency with both tests. Regardless of the number of data points per set, the same weight was attributed to each data set in the optimization procedure.

With the sum of squared relative deviations of activity coefficients as objective function, parameter sets are obtained which can be supposed to produce the "best" representation of vapor-liquid equilibrium within the temperature resp. pressure range which is covered by the sets of experimental data used.

For systems for which the evaluation has been possible, the recommended values are given at the end of the system on a separate page. Besides recommended parameters for the Wilson, NRTL, and UNIQUAC equation, there are listed the data sets used in the optimization by citing the references together with corresponding temperature or pressure.