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LONGHORN NOTES

Preface

This is the fifth annual proceedings of our Functional Analysis Seminar at The University of
Texas. It is the first issue to be published in the Springer-Verlag Lecture Notes. All the articles
that appear are based on talks given in the seminar. Some of the articles contain expositions of
known results; some of them present fresh discoveries, perhaps not yet formulated in the final
style they would assume in a journal article. Other articles may contain both ingredients and
are written in complete, final form. The purpose of the Notes is to provide an outlet for all of
these kinds of mathematical exposition. We thank the participants in our seminar for sharing
their mathematical ideas with us throughout the year, and for contributing to the Longhorn
Notes.

This entire issue was again typeset by Margaret Combs on a Sun Computer, using the
TEX text formatting system. We are deeply appreciative of her considerable patience and
remarkable craftsmanship. We also wish to thank The University of Texas for supporting the
publication of the Longhorn Notes.

Ted Odell
Haskell Rosenthal
December 1987
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On the Choquet representation theorem

HASKELL ROSENTHAL *

Department of Mathematics
The University of Texas at Austin
Austin, Texas 78712

Introduction

We give here a self-contained elementary proof of the Choquet representation theorem (both ex-
istence and uniqueness), as well as an exposition of the Choquet-Kendall simplex-characterization

theorem. The existence part of Choquet’s theorem goes as follows.

Theorem 1. Let K be a compact metrizable convex subset of a locally convex topological
space, and let x € K. There exists a Borel probability measure p on K, supported on the

extreme points of K, so that

1) xz/;(kd,u(k).

The integral in (1) may be interpreted as the Bochner-integral of the identity function
I(k) = k on K, since I is strongly measurable. Of course (1) holds if and only if f(z) =
Sy F(k) du(k) for all f € X*, where X is the locally convex space containing K.

We prove Theorem 1 in Section 1, as follows: as is well-known, K is affinely homeomorphic
to a compact convex subset K' of Hilbert space (see the last remark in Section 1 for a review
of the standard proof). Assume K = K' and z € K. It follows by the weak*-compactness of
P(K), the probability measures on K, that there exists a v € P(K) maximizing the integral
of the norm-squared function on K over all 4 € P(RK') representing z, i.e., satisfying (1). We
then show by a direct elementary argument, using the uniform convexity of Hilbert space, that
v is supported on the extreme points of K.

Our argument makes no explicit use of the classical treatment as given in e.g., [1], [2] or
[17]. Of course it is strongly motivated by the previous classical proofs and some more recent
developments, which we now indicate. (Phelps has also given an exposition of Theorem 1 by
considering the Hilbert space case; see [18].)

Following Choquet’s seminal work ([8], [9], [10]) and important further developments by
Bishop and de Leeuw [5], Hervé gave a direct proof of Theorem 1 in [15], as follows: Let K

* Research was partially supported by NSF DMS-8601752.



2 On the Choquet representation theorem

be a compact subset of a locally convex space. For f a continuous function on K, define f by
f= inf{ @ > f :a is an affine continuous function on K } :

( f is called the upper semi-continuous concave envelope of f). Now fix f a continuous convex
function on K and z € K. Hervé then proved that there exists a regular Borel probability

measure p on K representing z and satisfying
() [ fau=ia.
K

Now if v is another such measure on K representing z, it is easily seen that [, fdv < [, fdv <
f(z) Hence the p satisfying (*) maximizes fK f dv over such v representing z, and moreover
fK fdu= fK fdu so f = f p-ae. Now Hervé showed that K is metrizable if and only if there
exists a strictly convex continuous function f on K; moreover if f is such a function and y € K,
he proved that f(y) = f(y) if and only if y is an extreme point of K. It thus follows that if
K is as in Theorem 1 and f is strictly convex continuous, then any such y representing « and

satisfying (*) is supported on the extreme points of K, thus proving Theorem 1.

Subsequent to Hervé’s work, Bonsall gave a simple deduction of the existence of such a p
satisfying (%) using the analytic form of the Hahn-Banach theorem ([6]; see also [7]). Edgar
studied the representation theorem in the more general context of separable closed bounded
convex subsets of a Banach space, and proved its validity here for sets C having the Radon-
Nikodym property, using a transfinite-martingale argument [11]. Ghoussoub and Maurey
subsequently gave a martingale proof of Edgar’s result in [14], by using their previous theorem
that such sets C admit “Hg-embeddings” onto Hjs subsets of Hilbert space. The Ghoussoub-
Maurey argument uses the parallelogram identity on Hilbert space; as we show elsewhere [23],
a variation of their argument holds in arbitrary Banach spaces, also for a more general class
of convex RNP subsets than the Hs ones. Thus the uniform convexity of Hilbert space is not
really needed for a martingale proof of Theorem 1.

These martingale proofs of Choquet type representation theorems are quite penetrating
but not “elementary”. The same may be said of the previous classical development discussed
above. The latter is certainly beautiful and deep, and immediately yields the validity of our
procedure. Indeed, if K is a compact convex subset of Hilbert space, f(k) = ||k||? is strictly
convex and continuous on K, so if y € P(K) maximizes the integral of f over all ' € P(K)
representing z, then y satisfies () and hence the conclusion of Theorem 1, by Hervé’s results.
As suggested by the work of Ghoussoub-Maurey and the expository article of Phelps [18], it is

our point of view here that rather than constructing such functions and carrying out arguments
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in the general setting, it is preferable to place K in Hilbert space (or a uniformly convex Banach
space). We then have a very natural strictly convex continuous function already defined, and
moreover we do not need to work with the class of all continuous convex functions and the
theory of their (usually discontinuous) upper semi-continuous concave envelopes, as required
in the classical development of Choquet theory.

In Section 2, we prove the uniqueness part of Choquet’s theorem, which is formulated as

follows.

Theorem 2. Let K be as in Theorem 1. Then K is a simplex if and only if every point of K

is represented by a unique probability measure supported on the extreme points of K.

A non-empty convex subset K of a real linear space X is called a simplez provided K x {1}
is the base of a lattice cone in X x IR. (The terms “base” and “lattice cone” are defined in
Section 2.) The non-trivial part of Theorem 2 is the “only if” assertion; we prove this by
first developing some elementary properties of vector lattices and ordered vector spaces with
a given cone-base. The main part of the proof then consists in showing that if g and v are
probability measures on the extreme points of K with disjoint supports, then their barycenters
are orthogonal as elements of the vector lattice generated by K (assuming K is in “general
position” as defined in Section 2). This is precisely the approach taken by Choquet in his
original treatment (8], and our proof is a variation of his arguments. In particular, we formulate
a geometric version of a result in [8] as Theorem 2.5. This fundamental discovery of Choquet’s
shows that for K an arbitrary compact convex subset of a locally convex space and A a compact
subset of Ext K, ¢0A is contained in the affine closure of the convex hull of the set of all points
z in K with F, C V, where V is a prescribed neighborhood of A in K and F, denotes the
smallest face of K containing z. (See the paragraph following the statement of 2.5 for the
definition of “affine closure”.) We first deduce Theorem 2 from Theorem 2.5, then conclude
Section 2 with the proof of the latter. We use a new lemma for this purpose, Lemma 2.8. Its
formulation is motivated by Lemma 3 of [8]; however our proof of 2.8 is rather different than
the discussion in [8].

Suppose K is as in Theorem 1 except that K is not assumed to be metrizable. Our
discussion also yields Choquet’s result in [8] that again if K is a simplex, every point of K is
represented by at most one regular Borel probability measure supported on the extreme points
of K. However as is well known, it can happen that there are points of K which have no such
representing measure. We refer the reader to the standard references [1], [2] and [17], for the
proper formulations and proofs of Theorem 1 and 2 in the non-metrizable setting.

Section 3 is devoted to the proof of the following result.



4 On the Choquet representation theorem

Theorem 3. Let K be a convex subset of a linear space X. The following conditions are

equivalent:
(1) K is a simplex.
(2) K is line-compact and the non-empty intersection of two homothets of K is a (possibly
degenerate) homothet of K.

Moreover if X is a linear topological space and K is o-convex, we have a third equivalent

condition:

(3) K is line-compact and the non-empty intersection of two translates of K is a (possibly

degenerate) homothet of K.

These notions are defined as follows:

For A, B non-empty subsets of X, B is a translate of A if B = A + z for some z € X; B
is a homothet of A if B is a translate of a positive multiple of A; B is a degenerate homothet
of A if B is a singleton. K is said to be line-compact (resp. line-closed) if LN K is a compact
(resp. closed) subset of L for every line L in X. A subset K of a linear topological space X is
o-conves provided for all sequences (k;) in K and ();) in R* with 352, \; =1, e Aikj
converges to an element of K.

Now fix K and X as in Theorem 3. Let us say that K is a classical simplez provided
K is the convex hull of an affinely-independent finite set. In his fundamental work in [8) and
[10], Choquet defined K to be what is now called a “simplex of Choquet” provided K satisfies
condition (2) of Theorem 3, with the “line-compactness” condition deleted, and he stated the
equivalence of conditions (1) and (2) of Theorem 3 for the case where K is compact and X is
a locally convex space. Kendall introduced the “line-compactness” condition and formulated
and proved the equivalence (1) < (2) in general, in his remarkable article [16]. An alternate
proof of this equivalence, due to Choquet, may also be found in the nice expository paper by
Goullet de Rugy [13]. As remarked by Kendall in [16], if K is a line-compact convex subset of
a linear space X, then K NY is a compact subset of Y for any finite-dimensional subspace ¥ of
X (endowed with its unique linear topology). Thus if K is a finite-dimensional convex set, then
if K is a simplex as defined above, K is compact; it followed easily from Theorem 2 that then
K is a classical simplex; of course the converse is obvious. Independently of Choquet’s work,
Rogers and Shephard proved in [19] that if K is finite-dimensional, then K is a classical simplex
if and only if K satisfies (3) of Theorem 3. Another treatment of the Rogers-Shephard result
was given by Eggleston, Griinbaum and Klee in [12]. It does not seem to be known if condition
(8) of Theorem 3 implies K is a simplex in general, without any topological assumptions. (It

seems worth pointing out, however, that the o-convexity condition is very general and occurs



Rosenthal 5

in most natural convex sets encountered in analysis. For example, it’s easily seen that K is
o-convex provided K is a sequentially complete bounded convex subset of a linear topological
space.)

The proof we give of (1) & (2) is essentially that of Kendall’s; we “localize” the conditions
in Theorem 3.2 in order to obtain (3) = (1). Our proof of this shows and is motivated by the
following elementary result (see Lemma 3.7): Let f be an integrable function on [0,1] with
fol fdt > 0. Then f* belongs to W, where W is the smallest class of integrable functions
satisfying the following properties for all u,v in W and scalars A > 0:

(a) fandl e W

(b) u e W

(c) max{u,v} € W whenever fol udt = fol vdt

(d) fw; > wp > --- are non-negative elements of W and w is

such that w, — w a.e., then w € W.

To complete our argument, we also use a result from [22] involving the notion of L!-convexity
first introduced by the author in [20].

We conclude Section 3 with the following simple application of Theorem 3 (whose formu-
lation and proof are motivated by the elegant discussion for the compact case given in [12]):
Let K; D Ky D --- be bounded sequentially complete simplexes in a linear topological space,
and assume K = ﬂ;x;l K; is non-empty. Then K is a simplex.

I have attempted to keep the exposition as elementary as possible. The first section in par-
ticular should be accessible to anyone familiar with some functional analysis. For some further
references to Choquet’s theorem and related material in addition to that already mentioned,

the reader is referred to [3], [4], [7], [24] and [26].

1. The existence theorem

We first give some notation and review some standard elementary facts. For M a compact
metric space, P(M) denotes the set of all Borel probability measures on M, endowed with the
weak*-topology with respect to C(M), the space of real-valued continuous functions on M.
For z in M, P; denotes the measure with mass one at z. Ps(M) denotes the set of finitely
supported members of P(M); i.e., Pg(M) = co{P, : z € M}.

For A a Borel subset of M and u a finite non-negative Borel measure on M, p|4 denotes
the measure defined by (g|a)(B) = p(A N B) for all Borel subsets B of M. u is said to be
supported on A if pu = pl4.

Fact 1. For M as above, Ps(M) is weak*-dense in P(M) and P(M) is weak*-compact.
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Now let K be as in the statement of Choquet’s theorem. For x € K and y € P(K), we
say that p represents z if (1) holds.

Fact 2. Every u € P(K) represents a unique z € K.

Fact 3. Let (pn), p in P(K) with p, — p weak* and let (z,),  in K with p representing z

and p, representing z,, for all n. Then z, — z.
Fact 4. K is affinely homeomorphic to a norm-compact convex subset of Hilbert space.
(See Remark 2 below for a review of the standard proof.)

Proof of the ezistence theorem. By Fact 4, we may assume that K is a compact convex subset

of Hilbert space. Fix ¢ € K and define X by

(2) A= sup{ /||k:|]2d/_z(k) :p € P(K) and u represents « } .

It then follows that there exists a 4 € P(K) so that

(3) u represents z and /\=/||k||2 du(k) .

Indeed, choose (pn) in P(K) with [||k||?dun(k) — X and p, representing z for all n. By
passing to a subsequence if necessary, we may assume p, — p weak* for some p € P(K) (by
Fact 1). Then p satisfies (3) (by Fact 3). (Of course we are using the fact that f(k) = ||k||? €
C(K), which incidentially also shows that A < co.)

Now let u € P(K) satisfy (3). We shall prove that p is supported on Ext K, the set of
extreme points of K. Suppose this s not the case. For § > 0, define F5 by

vtz

(4) F5={I€K: There are y and z in K with = =

We have that Fj is closed and F5 C Fy if § > §' > 0, hence K ~ Ext K = U Fy/n (which
incidentally shows Ext K is a G subset of K). It follows that there exists a 6 > 0 so that

(5) a2 u(Fs)>0.

It follows (by Fact 1) that we may choose a sequence (u;,) in Ps(F;s) so that
1

(6) H — - | F5 weak* in P(Fs) .

(By the Tietze extension theorem, convergence in P(F5) is the same as convergence in P(K).)

For each n, let pu, = au!,, choose ()" in Fs and A" > 0 with Y. A" = « so that
“ Hn 1 /i=1 T 17

(M s, £ Z A7 P,y



Rosenthal 7

(the summations in (7) and below extend over all ¢ with 1 < ¢ < m,). Now for each n and i,

choose y* and z! in K with

n_ Ytz Y — 2
(8 =" a and |[|[Z——[=6.

Define v, by
Pyr + Ppr
VUp = Z AP ———

By passing to a subsequence if necessary, we may assume that there is a v supported on Fj
with v € P(K) and v, — v weak*.

Then defining p by p = v + p|~F,, we have that p € P(K) and p represents z. Indeed,
letting X be our Hilbert space and f € X*, we have that for each n,

[ i = SR FOIED < 50 ()
=S = [ fdun.

Hence since v, — v and pn — |5, weak*, [ fdv = fF fdp. Since v is supported on Fg,

J[ordu= [ saus [ sau= [ rau=s
(and also v(F5) = a so p € P(K)).
So far we have not really used that X is a Hilbert space (or even a Banach space, for that
matter). We do so now. Fix n and ¢; setting £ = z?, y = y! and z = 2, we have by (8) and

the parallelogram identity that

ylI? + ||2]|? y+z y—=z
o AP IR otz ey

> [|lz]l* + 6* .

Hence we obtain that

: JPI & e
P o = S
(10) zZA?||x.-"||2+ZA:'62 (by 9)
= [ IHIP din(®) + a8?

Again since v, — v and g, — p|F, weak®, we obtain immediately from (10) that [ ||k||? dv(k) >
st |l%1I? du(k) + ab?, whence also by (2) and (3),

(11) A2 / ”k”zdﬂ(k) > V/Hk”2 du(k) + a6 = A+ ab? > .
This contradiction completes the proof.

The argument actually gives direct quantitative information, which we summarize as fol-

lows:
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Theorem 1.1. Let K be a compact convex subset of Hilbert space, z € K, A as in (2) and
u € P(K) with pu representing x. Then for § > 0 and Fs as in (4),

(12) A2 [k du(h) + 6% u(Fe)

Evidently if 4 € P(K) satisfies (3), we obtain immediately from (12) that u(Fs) = 0 for
all § > 0, thus recapturing our assertion that p is supported on Ext K.

Remarks.

1. This argument holds for compact convex subsets of uniformly convex Banach spaces.
Indeed, if X is such a Banach space, it is easily seen that if K is a bounded subset of X, then
for all § > 0, there is an 1(8) > 0 so that for all y and z in K,

llyll” + 1l=11”
2

+ : -
> LR 4020 it |55 26

(Of course the function 7 depends only on the modulus of convexity of X and sup{||k| : k €
K}.) We then obtain the following analogue of the above result.

Theorem. Let X be a uniformly convex Banach space, K a compact convex subset of X,
z € K, X asin (2) and pu € P(K) with p representing z. Then for § > 0, Fs as in (4) and n(6)
as above,

A / 1|12 dps(k) + n? (6)(Fs) -

2. We deduce the standard Fact 4 as follows: let K be a compact convex metrizable subset
of a locally convex space X and let A(K) denote the space of all affine continuous functions
on K under the supremum norm. Then A(K) is a closed subspace of C(K) and hence A(K) is
a separable Banach space; since X* | K C A(K), the members of A(K) separate the points of
K. Now defining Ty : K — A(K)* by (T1k)(¢) = ¢(k) for all k € K and ¢ € A(K), we have
that T) is a one—one affine map, continous from K into A(K)* in its weak*-topology. Thus
setting K, = Ty(K), T; is an affine homeomorphism from K onto K;. Let now fy, f2,... be
a countable dense subset of the ball of A(K) = {f € A(K) : supgex |f(k)] < 1} and define
S:02 - A(K) by Sg = Zjil 279g(j)f; for all g € £2. 1t follows that S is a compact operator
with range dense in A(K) and hence setting T, = S*, then T} : A(K)* — £2 is a one—one weak*-
continuous compact operator; hence letting Ko = T2(K;), K2 is norm-compact and T3 | K is
an affine homeomorphism from K; onto K;. Thus T = T,T; is an affine homeomorphism

between K and K,.
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2. The uniqueness result

We begin with recalling some standard algebraic notions. We then review several elementary
propositions, beginning with the proof of Theorem 2 itself after Proposition 2.3.
Let X be a real linear space; C' a non-empty subset of X. C is called a cone (with vertex

0) if for all z,y in C and scalars A > 0,

(a) Az4+yeC
and

(b) z and —z€C imply z=0.

For a given cone C in X, define a relation “<” on X by: for z,yin X, z < y provided y—z € C.
We then have that (X, <) is a partially ordered vector space. That is, “<” is a partial order on
X so that for all z,y,2 in X and scalars A > 0, if £ < y then

z+2<y+z and Az <Ay

and evidently C = {z € X : ¢ > 0}. (Conversely every partially ordered vector space has its
order uniquely determined by the cone C of its non-negative elements). C is called a lattice
cone provided C is a cone so that if < is the corresponding order relation on X and Z = C-C,
then (Z, <) is a vector-lattice; that is, every pair z,y of elements of Z has a least upper bound
in Z, denoted z V y (equivalently, a greatest lower bound in Z, denoted z A y).

Finally, a non-empty convex subset K of X is said to be the base of a cone C provided
for every non-zero element y of C there exist unique k in K and A > 0 with y = \k; we call C

the cone generated by K. We note the following important, simple result.

Proposition 2.1. Let K be a non-empty convex subset of X. Then the following are equiv-

alent.

1. K is the base of a cone.

2. 0 ¢ Aff(K).

3. There is a hyperplane H in X with K C H and0 ¢ H.

4. There is a linear functional p on X with p(k) =1 for all k € K.

(We denote the linear span of K by span K; Aff(K) denotes the smallest affine subspace
containing K, that is, the smallest set ¥ so that K C Y andif y; # y2 in Y, then L C Y where
L = {ty1 + (1 —t)y2 : t € R} is the line joining y; and y,. It is easily seen that if ko € K, then
Aff(K) = [span(K — ko)) + ko.)

We say that K is in algebraically general position in X provided one (and hence any) of
the conditions of 2.1 hold. When this occurs, we call C = U,\zo MK, the cone generated by
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K and the corresponding order relation < the order induced by K; for short, we also simply
say that “(X, <) is ordered by K”. It is worth pointing out that if (X, <) is ordered by K
and p satisfies 4 of Proposition 2.1, p is strictly positive on X. That is, for z € X with z > 0,
p(z) > 0. (Conversely an ordered vector space has a base for its cone of positive elements
provided it admits a strictly positive linear functional.)

The following fundamental proposition summarizes the connection between affine prop-
erties of convex sets and order properties of the cones they induce. (For convex sets K;
and K;, a map a : K; — K, is called an affine equivalence if o is one-one onto with
a(Adz + (1 — N)y) = Aa(z) + (1 — Na(y) for all z,y € K, and A with 0 < A < 1. For
partially ordered vector spaces X; and X, T : X; — X, is called an order isomorphism

provided T is linear, one-one onto, and for all z,y in X;, z < y if and only if Tz < Ty.)

Proposition 2.2. Let K,, K, be convex subsets of real linear spaces X;, X, and assume K;
is in algebraically general position in X; with X; = span K; and (X;,<) ordered by K; for
it =1,2. Then X; and X, are order isomorphic if K; and K, are affinely equivalent; precisely,
given a : Ky — K, an affine equivalence, there exists a unique order isomorphism T : X; — X,

with T | K; = a.

Now recall the fundamental definition given in the introduction.

A convex non-empty subset K of X is said to be a simplex provided K x {1} is the

base of a lattice-cone in X x R.

Evidently K x {1} is in algebraically general position in X x R; it follows immediately
from the preceding proposition that K is a simplex if and only if for any (resp. some) K’
in algebraically general position in a real linear space X', with K' affinely equivalent to K,
X' is a vector lattice, where (X', <) is ordered by K’ with X' = span K’'. As noted in the
introduction, the uniqueness theorem (Theorem 2)and the Choquet-Kendall characterization
theorem yield that if X if finite-dimensional, K is a simplex if and only if K is a classical
simplez, i.e., the convex hull of a finite affinely independent set.

We next wish to review some standard vector-lattice concepts (cf. [25]). For A a non-
empty subset of a partially ordered vector space X, we say that sup A exists provided there
is a (necessarily unique) element z of X which is a least upper bound of A; we then let sup A

denote this element.

Proposition 2.3. Let (X, <) a vector-lattice, z,y, z elements of X, and A > 0 be given.

(@) (e+2)V(y+z)=(eVy)+zand (c+2)A(y+2)=(zAy)+2
Mz Vy)=AzV Ay and ANz Ay) = Az A dy.
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(b) Setting zt =zV0andz~ =—z V0, thenz =zt — 2~ and z¥ Az~ = 0. Moreover
ifr=y—z2andyAz=0,theny=zt andz=z".

(c) Let A be a non-empty subset of X such that sup A exists, and set s A A= {zAa:
a € A}. Then sup(z A A) exists and sup(z A A) = z A sup A.

(d) Let z,y,2 >0. Thenz A (y+2)<zAy+zAz.

The proof of the “if” part of Theorem 2 follows easily from standard results and the above
considerations. We first require the following notion. Let K be a convex subset of a linear
topological space X. We say that K is in general position provided there exists a p € X* with
p(k) =1 for all k € K. (As usual, X* denotes the set of continuous linear functionals on X.)
Evidently if K is in general position, K is in algebraically general position and 0 ¢ Aff K; if K
spans X or if X is locally convex, then conversely 0 ¢ Aff K implies K is in general position.
Finally, K x {1} is obviously in general position in X x R.

Now assume that K is a compact metrizable convex subset of a locally convex space X. We
may assume without loss of generality that K is in general position in X withspan K = X. Let
B be a non-empty Borel subset of K, let M (B) denote the set of all finite non-negative Borel
measures on K supported on B, M(B), the span of M (B), and set P(B) = P(K)NM4(B).
We then have that P(B) is a base for M4 (B) and M4 (B) is a lattice cone for M(B); moreover
M(B) is a sub-lattice of M(K). (We shall not prove this important, standard result. We note
that if u,v € M(K) and A = ||+ |v| (with |g|, |v| the total variation of x and v respectively),
then d(p Av) = fdA and d(p V v) = gdX where

. [dp dv dp dv
f=m1n{ﬁ 5 ﬁ} ; gzmw{-ca ; d_/\}

and du/d)\ and dv/dX\ denote the Radon-Nikodym derivatives of p and v respectively, with
respect to A. If p,v are supported on B, so is A and hence then g A v and g V v belong to

We now easily obtain the “if” part of the uniqueness theorem. Indeed, define the map
a: P(Ext K) — K by a(p) = [, kdu(k) for all 4 € P(Ext K). Theorem 1 shows that a is a
well-defined surjection and of course « is an affine map. Hence if every point of K is uniquely
represented by a member of P(Ext K'), a is a bijection and so (X, <) is order-isomorphic to
M(Ext K) and thus a vector-lattice by the above considerations and Proposition 2.2.

We finally deal with the deep part of Theorem 2, namely the “only if” assertion. The
proof we give is a variation of the arguments given in Choquet’s original treatment [8], with
some “geometric crystallization” of his discussion. Throughout the remainder of this section,

we let K be a fixed convex infinite subset of a linear space X, with K in algebraically general
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position in X and span K = X; < denotes the order relation on X induced by K. We also let
p be the unique linear functional on X withp | K = 1.

We first require some basic definitions. Non-negative elements z and y of X are said to
be orthogonal if whenever u is a non-negative element of X with u < z and u < y, then u = 0;
we use the notation = L y to denote that  and y are orthogonal. We note that if (X, <) is
a vector lattice, then z and y are orthogonal if and only if £ A y = 0. (Indeed, one direction
is immediate; for the other, suppose z and y are orthogonal and u in X is such that u < z
and u < y. Then also vt < z and ut < y, hence ut = 0. Since v = ut — u~, we deduce
that u < 0, hence 0 is the greatest lower bound of z and y, i.e., Ay = 0.) Finally, subsets
A and B of non-negative elements of X are orthogonal, denoted A L B, provided a and b are
orthogonal for all a in 4 and b in B.

A convex subset F' of K is called a face of K provided F' is eztremal; that is, whenever z
and y are in K and Az + (1 — M)y € F for some 0 < A < 1, £ and y belong to F. For z in K,

F, denotes the smallest face of K containing z; that is,
(13) F,=(){F:F isafaceof Kandz € F } .

(It is easily seen that the intersection of an arbitrary family of faces is also a face; thus the
right side of (13) is indeed the smallest face containing x.) The next elementary result (cf.

[13]), gives a fundamental relationship between orthogonality and faces.

Proposition 2.4. Let z and y be elements of K.
(a) F, ={k€ K : thereisa k' € K and0 < A <1 withz = Ak + (1 — A\)k'}.
(b) = and y are orthogonal if and only if F, and F, are disjoint.

Remark. F, is sometimes called the face generated by x. It is obvious that the “A” in (a)
may be chosen of the form A = 1 for n a positive integer; hence one obtains immediately from

(a) that

Fo=()[szs—(s—1)K]nK = ﬁ[nz—(n—l)K]ﬂK.

s>1 n=1

Proof of 2.4. To see (a), let provisionally G, denote the right side of (a). Now if k¥ € G, there
are k' in K and 0 < A < 1 with z = Ak + (1 — A)k'; it follows that if F is a face of K containing
z, then k € F, so F; D G,. Next, we observe that G, is convex. To see this geometrically,
for x1,z2 in X, set T173 = {Az1 + (1 — A)z2 : 0 < A < 1}. Say that =z € X is interior to T1Z3
if  is an interior point of T1Z7 in its relative topology; i.e., if £ = Bz1 + (1 — 8)z2 for some
0 < B8 < 1. Now suppose then k;,k; € G, and k is interior to k1k;. Choose k), k), € K so

that z is interior to k;k} for ¢ = 1,2. A geometric picture now reveals that the line joining



