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Preface

This volume contains the proceedings of the international conference on ‘Computa-
tional Methods and Function Theory’, held at the Universidad Técnica Federico Santa
Maria, Valparaiso, Chile, March 13-18, 1989.

That conference had two goals. The first one was to bring together mathematici-
ans representing two somewhat distant areas of research to strengthen the desirable
scientific cooperation between their respective disciplines. The second goal was to have
this conference in a country where mathematics as a field of research is developing and
scientific contacts with foreign experts are very neccessary. It seems that the conference
was successful in both regards. Besides, for many of the non-Chilean participants this
was the first visit to South-America and these days left them with valuable personal im-
pressions about the regional problems, an experience which may lead to active support
and cooperation in the future.

About 40 half- and one-hour lectures were presented during the conference. They are
listed on the last pages of this volume. Of course, not all of them led to a contribution
for these proceedings since many have been published elsewhere. However, the papers
in this volume are fairly representative for the areas covered.

To hold such a conference, in a place somewhat distant from the international mathe-
matical centers, obviously requires strong support from funding agencies, and it is the
organizer’s pleasure to acknowledge those contributions at this point. The local orga-
nization was made possible through generous grants from the Fundacién Andes, Chile,
and from our host, the Universidad Técnica Federico Santa Marfa. In addition, for-
eign participants were supported by a special grant of the National Science Foundation
(NSF), USA, and by other national agencies such as the Deutsche Forschungsgemein-
schaft (DFG), FRG, the German Academic Exchange Service (DAAD), FRG, the British
Council, UK, etc.

We also wish to thank the Universidad Técnica Federico Santa Maria for the hos-
pitality on its marvellous campus overlooking the beautiful Bay of Valparaiso, and the
many people who did help us with the organization. Especially, we wish to thank Ruth
Ruscheweyh, who assisted the organizers during the conference and the hot phase of its
preparation, and also was responsible for the typesetting (in IATEX) of the papers in this
volume. Finally, we should like to thank Springer-Verlag for accepting these proceedings
for its Lecture Notes series.

For the editors:
Stephan Ruscheweyh
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Open Problems and Conjectures in Complex
Analysis

Roger W. Barnard

Department of Mathematics, Texas Tech University
Lubbock, Texas 79409-1042, USA

Introduction

This article surveys some of the open problems and conjectures in complex analysis
that the author has been interested in and worked on over the last several years. They
include problems on polynomials, geometric function theory, and special functions with
a frequent mixture of the three. The problems that will be discussed and the author’s
collaborators associated with each problem are as follows:

1.

10.
11.
12.

Polynomials with nonnegative coefficients (with W. Dayawansa,
K. Pearce; and D Weinberg) . .« s swows o s smivansss s swomms s s siawns s o sioirs s 5 sieies s 50 siisis 6 5 2

The center divided difference of polynomials (with R. Evans and C. FitzGerald)....... 4

Digital filters and zeros of interpolating polynomials (with W. Ford and H. Wang)..... 5

. Omitted values problems (with J. Lewis and K. Pearce)...................c.oooiiat. 8
. Mobius transformations of convex mappings (with G. Schober)....................... 12
. Robinson’s 1/2 CONJECHULE. . . vumui s emmmun s 5o smmoms s« 6 s somm 6 s ¢ mioe s o 3 s1308 & 8 wiaraia’s s 3 sisie 13
Campbell’s conjecture on a majorization - subordination result (with C. Kellogg)..... 14
. Krzyz conjecture for bounded nonvanishing functions (with S. Ruscheweyh).......... 15
A conjecture for bounded starlike functions (with J. Lewis and K. Pearce) ........... 16
A. Schild’s 2/3 conjecture (with J. Lewis) .......oouiiuiiiiiiiii i, 18
Brannan’s coefficient conjecture for certain power series ................ooiiiiii... 19

Polynomial approximations using a differential equations model (with L. Reichel) .... 20
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1. Polynomials with nonnegative coefficients

We first discuss a series of conjectures which have as one of their sources the work
of Rigler, Trimble and Varga in [66]. In [66] these authors considered two earlier papers
by Beauzamy and Enflo [23] and Beauzamy [22], which are connected with polynomials
and the classical Jensen inequality. To describe their results, let

p(z) = ZanJ ZaJ , where a; =0, 7 >m,

7=0

be a complex polynomial (# 0), let d be a number in the interval (0,1), and let k be a
nonnegative integer. Then (cf [22], [23]) p is said to have concentration d of degree at
most k if

k )
1) > lajl > dYlajl.

Beauzamy and Enflo showed that there exists a constant C’d,k, depending only on d
and k, such that for any polynomial p satisfying (1), it is true that

oo

(2) 2%/02 log |p(e'”)|d6 — log (Z Iajl) > Cupe

7=0

In the case of k = 0 in (2) the inequality is equivalent to the Jensen inequality [23],

1 2 X
5= | loglp(e)|d8 > log|al.
27 Jo

Rigler, etc., in [66] considered the extension of this inequality from the class of
polynomials to the class of H* (cf. Duren [36]) functions. For f € H* the functional

I(f) = 5 / log | £(€'*)|d6 — log (2: la;l)
can be well-defined and is finite. They let
(3) Cir = inf{J(f): f € H® and f(z ZanJ # 0) satisfies (1)}.

For a (fixed) d € (0,1) and a (fixed) nonnegative integer k, it was shown that there
exists an unique positive integer n (dependent on d and k) such that

1 & (n) (n—l )
= L) <d< > T
2nJ':O J 2n-1 1=0 J

For this n, set
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n—1
k 1
pP= — L.
n—1
§=0< ] )_d2n—1

With these definitions the following conjecture was made in [66].

Conjecture 1. Let Cyy be defined by (3). Then

(4) Cax = log (W) .

In [66] Conjecture 1 was verified for k¥ = 0 and for the subclass of Hurwitz polyno-
mials, i.e., those polynomials with real coeflicients and having all their zeros in the left
half-plane. In order to verify the conjecture for the entire class an interim step was sug-
gested. This step was one of the motivations for the following problem which was solved
recently by this author and others in [10]. Let p be a real polynomial with nonnegative
coefficients. Can a conjugate pair of zeros be factored from p so that the resulting poly-
nomial still has nonnegative coeflicients? We gave an answer to one proposed choice for
factoring out a pair of zeros. Fairly straightforward arguments show that if the degree
of the polynomial is less than 6 then a conjugate pair of zeros of greatest real part can
be factored out and the resulting polynomial will still have non-negative coefficients.
However, the example

p(2) = 140 + 20z + 2% + 100023 + 9502* + 52° + 202°

shows that the statement is not true for arbitrary polynomials with non-negative coef-
ficients. A large amount of computer data had suggested the following:

Conjecture 2. The nonnegativeness of the coefficients of a real polynomial is pre-
served upon factoring out a conjugate pair of zeros of smallest positive argument in
absolute value.

Interestingly this last conjecture also arose quite independently in the work of Brian
Conrey in analytic number theory in his work on one of Polya’s conjectures. Conrey
announced Conjecture 2 at the annual West Coast Number Theory Conference in De-
cember 1987. The conjecture was communicated to this author by the number theorist
Ron Evans. Indeed Evans, using a large amount of computer evidence, has generated a
closely related conjecture which we include.

Conjecture 3. If a polynomial of degree 2n has zeros

ellttar) and e~it+ar) k=1,2...n,

where the a; lie between 0 and 7, then all the coefficients are nondecreasing functions
of t for small t > 0 provided the coefficients are all nonnegative for t = 0.

A special case of Conjecture 3 where the zeros on the upper semicircle are equally
spaced would be of special interest. Although Conjecture 2 was verified in [10] the
techniques do not appear applicable to Conjecture 3.
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2. The center divided difference of polynomials

Another series of polynomial problems was generated in classical number theory by
the work of Evans and Stolarsky in [37]. Given a polynomial p and a real number A
define 8,(p), the center divided difference of p, by

{p($+/\)—p(z—/\) /\#0’

2
P'(2), A=0.

o\(p) =

We did a study of the behavior of the é,(p) as a function of A in [11]. A number of
classical results of Walsh and Obrechkoff and of Kuipers [50] give some information
about the zeros of é,(p) as a function of A\. Let W(p|] equal the width of the smallest
vertical strip containing the zeros of p. It follows from the classical work that

W{éx(p)] < W(p]

and that the diameter of the zero set of §,(p) approaches co as |A| approaches co. The
Gauss-Lucas theorem shows that

W(p] < Wip].
It was shown in [11] that
(5) W(ex(p)] < Wp']

and the conditions on p when equality holds in (5) are given. We were also able to prove
that
Wier(p)] = O(1/A) as |A] - oo.

The numerical work done by the number theorists had suggested,
Conjecture 4. W(6,(p)] monotonically decreases to zero as |A| — oo.

In that direction it was shown in [11] that

(6) W(b22(p)] < W[éx(p)]

for all positive A and conditions for equality in (6) were found. In addition, if the zero
set of p is symmetric about a vertical line then

(7) W(éx(p)] = 0 for all A > W[p'].

However, an example was given of a polynomial p., that contradicts Conjecture 4 at
least for some A. The polynomial p, has its zero set symmetric about the imaginary
axis and has the property that for small e, W[é(p.)] = 0 and W[6\(P.)] = 0 for
A > /T + 26 = W|p,] while W[6)(p.)] > 0 for

1< A< V1426
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Thus conjecture 4 needs to be modified to read
Conjecture 5. W[é)(p)] monotonically decreases to zero for A > W ([p'].

The original question that motivated the number theorist’s interest in this problem
was the determination of the zeros of §)(pn) where

N

pn(z) = ]I (z k).

k=-N

Also occuring in their work were the iterates, (") of § defined inductively by
8 (pw) = 6,65 (pw)]

with
8 (pn) = 6x(pn).

The numerical work had suggested

Conjecture 6. All nonreal zeros of 6&")(;)1\;) are purely imaginary for all A and all

Conjecture 6 has been verified in [11] for n = 1. Indeed, an interesting problem, with
other ramifications in number theory, see Stolarsky [71], would be to characterize those

polynomials for which 5&") has only real and pure imaginary roots.

3. Digital filters and zeros of interpolating polynomials

Some interesting problems arise when classical complex analysis techniques are ap-
plied to digital filter theory.

Polynomials to be used in interpolation of digital signals are called interpolating
polynomials. These polynomials may require modification to assure convergence of their
reciprocals on the unit circle. Such modifications provide the opportunity to apply
classical analysis theory as was done by the author, Ford, and Wang in [12].

A real function, ¢, defined for all values of the real independent variable time, t, is
called a signal. A digital signal, v, is a real sequence, {7, : —0o0 < m < oo}, consisting
of equally spaced values or samples, v, = g(mAt), from the signal, g, with a time
increment or sample interval, At. Thus, the independent variable for digital signals
such as v is sample time, mAt, or simply sample number, m.

The signal, g, is studied in terms of its classical Fourier transform, G, as a function
of real frequency, w. The digital analog of the Fourier transform consists of the study of
a sequence such as v in terms of its Z-transform, which is defined to be the power series,
I', having 7., as the coeflicient of z™. Frequency’s digital analog comes from evaluation
of Z-transforms such as I" on the unit circle with the negative of the 6 in z = €'’ referred
to as frequency. If the coefficients in I" are used without any actual evaluation of I'(z)
or g is used without computation of G, such use is said to be in the time domain. But
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if I'(2) is used with evaluation for some z of unit modulus or G is used, such use is said
to be in the frequency domain.

Signals are based on even functions in a number of applications. This restricts digital
signals to self-inversive cases meaning that I'(z) = I'(27!) for z # 0. Equivalently, v is
a symmetric sequence meaning that ~,, = y_,, for all m.

A second signal, f, with Fourier transform, F', poses as a filter of the signal, g, if the
convolution integral, g * f, of ¢ and f is considered. Of course, the Fourier transform of
g * f is the product of the Fourier transforms, G of g and F of f. The discrete analogy
consists of the product of Z-transforms, I" and @, where the latter refers to the power
series with the sample, &,, = f(mAt), taken from the filter, f, as the coefficient of z™.

Reduction of certain frequencies is a fundamental aim in the application of a filter,
f, to a function, g. This can involve the definition of f by the requirement that F(w)
be a constant, ¢, for |w| < wy but zero otherwise. If so, ¢ can be chosen so that

(8) f(t) = sinc wet,
where sinc is defined by

) sinz
(9) sine z = ——.

These equations illustrate that the definition of a real signal is determined from the
specifications of its Fourier transform. Similarly, digital signals are often defined by the
specification of Z-transforms.

The Fourier transform, F, of the f in (8) is referred to as a frequency window since
it has compact support in frequency. Application of such a window to a signal, g, is
known as a frequency windowing. These problems concern discrete time windowing,.
This consists of the scaled truncation of an infinite sequence such as v to obtain a finite
sequence of the form {¢,,ym : —L < m < L} wherein the finite sequence, {c,, : —L <
m < L}, is referred to as a time window.

Suppose a given digital signal, {b; : —00 < k < oo}, is such that b; is understood
to correspond to the time, kN At, with the sample interval, NAt, where N is a natural
number such that N > 1. If this digital signal is to be compared with digital signals
based on the smaller sample interval, At, the given digital signal must be interpolated to
the smaller sample interval, At. For example, insertion of N — 1 zeros between every by
and b4 1, followed by multiplication of the Z-transform of the result by the interpolating
series, Py, defined by

(10) Py(z) =1+ 3 (2™ 4 2™™) sinc %’T
m=1
leads to
(11) Alz)= Y a.2" = ( > bjsz) Pn(2).
n=-—00 Jj==—00

Since the coefficient of z*V ayy, in A comes from products of b; and sinc(mn/N) such
that kN = jN £ m, it follows that m = 0 (modN), sinc(mn/N)=0 for nonzero m, and
agn = bg. Thus, A is an interpolation of the given B with coefficients, b;.
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A major goal is to study possible alternatives to the interpolation used in (10) in
terms of truncation of the interpolating series in (11). In practice one truncates P to
obtain the interpolating polynomial, Py j, defined by

L-1
(12) Pyr(z) = 24! (1 + Y (2™ +2z7™) sinc m) ,

m=1 N
where N > 1.

To assure stability and accuracy of evaluation it is important that alternative P’s
have no zeros on the unit circle. It is shown in [12] that all of the zeros of Py, are
of unit modulus when L < N and examples are given showing that when L > N +1
almost any combination of zeros inside, on, and outside the unit circle can occur. A
number of classical results are then combined to give sharp conditions on real sequences
{em : 1 <m < oo} so that the function Py ; defined by

L-1 o
(13) Py (z) =2""114 3 (2™ + 27™)cm sinc N
m=1
has no zero of unit modulus. In particular, in order to define a useful test to determine
if a specific sequence of numbers will work for the ¢,,’s in (13) the following theorem
was proved in [12].
Theorem 1. If a real sequence, {b,, : 0 < m < L,by = 1} is such that

1 by - br-1  bi

b 1 by - br_q

: >0
b1 - by 1 b

b by - by 1

for0 < k < L, let

o = b, (1 B 2logL)

L
define the coefficients in (13). Then Py ; has no zero of unit modulus.

A number of the standard “windows” that occur in the engineering literature are
then shown to be just special cases of those defined in Theorem 1, including the very
generalized Hamming window and the Hanning window. (see Rabniner and Gold’s book,
Theory and Application of Digital Signal Processing.)

The distribution of zeros and the orthogonality property of the sinc functions deter-
mine the interpolating properties in (11) and enables the classical results to be applied.
Thus one can ask, can the sinc functions be replaced by more general orthogonal fun-
ctions, e.g., Jacobi polynomials, to create a more general setting in which many more
applications can be found? Discussions with several engineers have suggested this.
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4. Omitted values problems

We now discuss a number of open problems in geometric function theory. Let
A, ={z:|z| <r}, with A; = A.

Let S denote the class of univalent functions f in A normalized by f(0) = 0 and
f(0) = 1. The problem of omitted values was first posed by Goodman [38] in 1949,
restated by MacGregor [57] in his survey article in 1972, then reposed in a more general
setting by Brannan [5] in 1977. It also appears in Bernardi’s survey article [24] and has
appeared in several open problem sets since then including [27],[40] and [60].

For a function f in S, let A(f) denote the Lebesgue measure of the set A\ f(A) and
let L(f,r) denote the Lebesgue measure of the set {A\f(A)} N{w : |w| = r} for some
fixed r,0 < r < 1. Two explicit problems posed by Goodman and by Brannan were to

determine

(14) A = sup A(f),
FeS

and

(1) L(r) = sup L(f, 7).
FeS

Goodman [38] showed that .227 < A < .507. The lower bound which he obtained

was generated by a domain of the type shown in Figure 1.

N

Figure 1

Later, Goodman and Reich [39] gave an improved upper bound of .387 for A. Using
variational methods developed by the author in [6] and some deep results of Alt and
Caffarelli [4] in partial differential equations for free boundary problems, a geometric
description for an extremal function for A was given by the author in [9] and by Lewis
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in [54]. This can be described as follows: There is an f; in S with A = A(fo) such
that fo(A) is circularly symmetric with respect to the positive real axis, i.e., it has the
property that for 0 < r < 1,

0 i p) i
e ' o 1 <
ag|fo(7‘€ )| and 69|fo(re )N <0, for0<f<m

(cf. Hayman [44]). Moreover the boundary of fo(A) consists of the negative real axis up
to —1, an arc v of the unit circle that is symmetric about —1 and an arc A lying in A,
except for its endpoints. The arc A is symmetric about the reals, connects the endpoints
of 4 and has monotonically decreasing modulus in the closure of the upper half disc.
These results follow by standard symmetrization methods. Much deeper methods are
needed to show (as in [9] and in [54]) that fo has a piecewise analytic extension to A with
f§ continuous on f5'(\) and |f5(f5'(w))] = ¢ < 1 for all w € AN{A\(~1,1)}. Using
these properties of fy it was shown by the author and Pearce in [19] that by “rounding
the corners” in certain gearlike domains a close approximation to the extremal function
could be obtained. This gives the best known lower bound of

247 < A.

The upper bound is conceptually harder since it requires an estimate on the omitted
area of each function in S. Indeed, it appears difficult to use the geometric description
of fo to calculate A directly. However, an indirect proof was used by the author and
Lewis in [17] to obtain the best known upper bound of

A< .31m.

Open problem. Show that fy is unique and determine A explicitly.
For the class S* of functions in S whose images are starlike with respect to the origin,
the problem of determining the corresponding

A* = sup A(f)
fes

has been completely solved by Lewis in [54]. The extremal function f; € S* defined by
A = A(fy) = 2357

is unique (up to rotation). The boundary of f;(A) has two radial rays projecting into
A with their end points connected by an arc A; that is symmetric about the reals and
has | £(C)] = o for all ¢ € £7(A).

The problem of determining L(r) in (15) was solved by Jenkins in [47] where he
proved that for a fixed r,1/4 < r < 1,

L(r) = 2r arccos(8+/r — 8r — 1).

The extremal domain in this case is the circular symmetric domain (unique up to rota-
tion) having as its boundary the negative reals up to —r and a single arc of {w : |w| = r}
symmetric about the point —r.
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The corresponding problem for starlike functions of determining L*(r) = sup;es.
L(f,r) was solved by Lewandowski in [53] and by J. Stankiewicz in [70]. The extremal
domain in that case is the circularly symmetric domain (unique up to rotation) having
as its boundary two radial rays and the single arc of {w : |w| = r} connecting their
endpoints. An explicit formula for the mapping function in this case was first given by
Suffridge in [72].

For the class 5S¢ of functions in S whose images are convex domains the corresponding
problem of determining

(16) A%(r) = sup A(f,r)
fese

and

(17) L(r) = sup L(r,v).
fese

where A(f,r) denotes the Lebesgue measure of A,/f(A), presents some interesting
difficulties. One particular difficulty is that the basic tool of circular symmetrization
used in the solution to each of the previous determinations is no longer useful. The
example of starting with the convex domain bounded by a square shows that convexity
is not always preserved under circular symmetrization. However, Steiner symmetrization
(cf. Hayman [44]) can still be used in certain cases such as sectors. Another difficulty is
the introduction of distinctly different extremal domains for different ranges of r. Since
every function in S° covers a disk of radius 1/2 (cf. Duren [36]) r needs only to be
considered in the interval (1/2,1). Waniurski has obtained some partial results in [74].
He defined r; and 7, to be the unique solutions to certain transcendental equations where
r1 &~ .594 and ry ~ .673. If F,/, is the map of A onto the half plane {w : Rew > —1/2}

and F, maps A onto the sector
s
arg (w + —)‘ < a}
4a

(o

whose vertex, v = —7/4a, is located inside the disk, then

AS(r) = A(Fyp,r)forl/2<r <y,
Le(r) L(Fpj,7) for 1/2 < r <y,

and
Lé(r) = L(F,,r) for ry <r < ry.

This author had announced in his survey talk on open problems in complex analysis
at the 1985 Symposium on the Occasion of the Proof of the Bieberbach Conjecture the
following conjecture:

Conjecture 7. The extremal domains in determining A°(r) and L¢(r) will be half-
planes, symmetric sectors and domains bounded by singles arcs of |w| = r along with
tangent lines to the endpoints of these arcs, the different domains depending on different
ranges of r in (1/2,1).
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This conjecture was also made independently by Waniurski at the end of his paper
[74] in 1987.

Another conjecture that was announced at the Symposium on the Proof of the Bie-
berbach Conjecture arose out of this author and Pearce’s work on the omitted values
problem. A significant part of characterizing the extremal domains for A°(r) and L°(r)
in (16) and (17) via the variational method developed in [6] would be the verification
of the following:

Conjecture 8. If f € S° then

. 1 2m 1
(18) lim 5= /0

<
Flre®) df < sup

2€A

f(z)

Using standard integral means notation this is equivalent to showing that the smal-
lest ¢ such that

(19) Mi[1/f] € Mo [2/ f(2)]

holds is ¢ = 1. Well known results (cf. Duren [36], pp. 214) on integral means show
that the smallest ¢ for all functions in S is two, while unpublished results of the author
and Pearce show that the smallest ¢ for the class of functions starlike of order 1/2 [cf
Goodman [40]] (a slightly larger class than S¢) is ¢ = 4/7. It was also shown that equality
holds in (18) for all domains bounded by regular polygons and it was conjectured that
equality holds for those convex domains bounded by single arcs of {w : |w| = r} and
tangent lines at the endpoints of these arcs. Verification of Conjecture 8 would give
an interesting geometric inequality. Let a convex curve I' have length L and have its
minimum distance from the origin be denoted by d. An application of the isoperimetric
inequality along with the conjecture would imply

2
2dn & 1/ dé . L

20) T S\amh 7 S 3

We note that the normalization for the functions f in S¢ would force the first and last
terms in inequality (20) to go to one as d goes to one.

Determining explicit values for A°(r) and L°(r) would involve computing the map
that takes A onto the convex domains bounded by an arc of {w : |w| = r} along
with the two tangent lines at the endpoints of this arc. The function defining this map
involves the quotient of two hypergeometric functions (cf. Nehari, [62]). In particular
an extensive verification shows that the function ¢ as shown in Figure 2

Figure 2



