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Preface to the Third Edition

Dedicated to the memory of the late Professor King Sun Fu (1930-1985), the handbook
series, with first edition (1993), second edition (1999) and third edition (2005), provides a
comprehensive, concise and balanced coverage of the progress and achievements in the
field of pattern recognition and computer vision in the last twenty years. This is a highly
dynamic field which has been expanding greatly over the last thirty years. No handbook
can cover the essence of all aspects of the field and we have not attempted to do that. The
carefully selected 33 chapters in the current edition were written by leaders in the field
and we believe that the book and its sister volumes, the first and second editions, will
provide the growing pattern recognition and computer vision community a set of valuable
resource books that can last for a long time. Each chapter will speak for itself the
importance of the subject area covered.

The book continues to contain five parts. Part 1 is on the basic methods of
pattern recognition. Though there are only five chapters, the readers may find other
coverage of basic methods in the first and second editions. Part 2 is on basic methods in
computer vision. Again readers may find that Part 2 complements well what were offered
in the first and second editions. Part 3 on recognition applications continues to emphasize
on character recognition and document processing. It also presents new applications in
digital mammograms, remote sensing images and functional magnetic resonance imaging
data. Currently one intensively explored area of pattern recognition applications is the
personal identification problem, also called biometrics, though the problem has been
around for a number of years. Part 4 is especially devoted to this topic area. Indeed
chapters in both Part 3 and Part 4 represent the growing importance of applications in
pattern recognition. In fact Prof. Fu had envisioned the growth of pattern recognition
applications in the early 60’s He and his group at Purdue had worked on the character
recognition, speech recognition, fingerprint recognition, seismic pattern recognition,
biomedical and remote sensing recognition problems, etc. Part 5 on system and
technology presents other important aspects of pattern recognition and computer vision.

Our sincere thanks go to all contributors of this volume for their outstanding
technical contributions. We would like to mention specially Dr. Quang-Tuan Luong, Dr.
Giovanni Garibotto and Prof. Ching Y. Suen for their original contributions to all three
volumes. Other authors who have contributed to all three volumes are: Prof. Thomas S.
Huang, Prof. J.K. Aggarwal, Prof. Yun Y. Tang, Prof. C.C. Li, Prof. R. Chellappa and
Prof. P.S.P. Wang. We are pleased to mention that Prof. Thomas Huang and Prof. Jake
Aggarwal are the recipients respectively in 2002 and 2004, of the prestigious K.S. Fu
Prize sponsored by the International Association of Pattern Recognition (IAPR). Among
Prof. Fu’s Ph.D. graduates at Purdue who have contributed to the handbook series are:
C.H. Chen (1965), M.H. Loew (1972), S.M. Hsu (1975), S.Y. Lu (1977), K.Y. Huang
(1983) and H.D. Cheng (1985). Finally we would like to pay tribute to the late Prof.
Azirel Rosenfeld (1931-2004) who, as one IAPR member put it, is a true scientist and a
great giant in the field. He was awarded the K.S. Fu Prize by IAPR in 1988. Readers are
reminded to read Prof. Rosenfeld’s inspirational article on “Vision — Some Speculations”
that appeared as Foreword of the second edition of the handbook series. Prof. Rosenfeld’s
profound influence in the field will be felt in the many years to come.
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The camera ready manuscript production requires certain amount of additional
efforts, as compared to typeset printing, on the part of editors and authors. We like to
thank all contributors for their patience in making the necessary revisions to comply with
the format requirements during this long process of manuscript preparation. Our special
thanks go to Steven Patt, in-house editor of World Scientific Publishing, for his efficient
effort to make a timely publication of the book possible.

September, 2004 The Editors
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CHAPTER 1.1

STATISTICAL PATTERN RECOGNITION

R.P.W. Duin, D.M.J. Tax

Information and Communication Theory Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
P.0O.Boz 5031, 2600 GA, Delft, The Netherlands
E-mail: {R.P.W.Duin,D.M.J. Taz} @ewi.tudelft.nl

A review is given of the area of statistical pattern recognition: the representation
of objects and the design and evaluation of trainable systems for generalization.
Traditional as well as more recently studied procedures are reviewed like the
classical Bayes classifiers, neural networks, support vector machines, one-class
classifiers and combining classifiers. Further we introduce methods for feature re-
duction and error evaluation. New developments in statistical pattern recognition
are briefly discussed.

1. Introduction

Statistical pattern recognition is the research area that studies statistical tools for
the generalization of sets of real world objects or phenomena. It thereby aims to
find procedures that answer questions like: does this new object fit into the pattern
of a given set of objects, or: to which of the patterns defined in a given set does it
fit best? The first question is related to cluster analysis, but is also discussed from
some perspective in this chapter. The second question is on pattern classification
and that is what will be the main concern here.

The overall structure of a pattern recognition system may be summarized as in
Figure 1. Objects have first to be appropriately represented before a generalization
can be derived. Depending on the demands of the procedures used for this the
representation has to be adapted, e.g. transformed, scaled or simplified.

The procedures discussed in this chapter are partially also studied in areas like
statistical learning theory 32, machine learning ?° and neural networks 4. As the
emphasis in pattern recognition is close to application areas, questions related to the
representation of the objects are important here: how are objects described (e.g. fea-
tures, distances to prototypes), how extensive may this description be, what are the
ways to incorporate knowledge from the application domain? Representations have
to be adapted to fit the tools that are used later. Simplifications of representations



like feature reduction and prototype selection should thereby be considered.

In order to derive, from a training set, a classifier that is valid for new objects
(i.e. that it is able to generalize) the representation should fulfill an important
condition: representations of similar real world objects have to be similar as well.
The representations should be close. This is the so-called compactness hypothesis?
on which the generalization from examples to new, unseen objects is built. It enables
the estimation of their class labels on the basis of distances to examples or on class
densities derived from examples.

Objects are traditionally represented by vectors in a feature space. An important
recent development to incorporate domain knowledge is the representation of objects
by their relation to other objects. This may be done by a so called kernel method??,
derived from features, or directly on dissimilarities computed from the raw data?S.

We will assume that, after processing the raw measurements, objects are given
in a p-dimensional vector space 2. Traditionally this space is spanned by p features,
but also the dissimilarities with p prototype objects may be used. To simplify the
discussion we will use the term feature space for both. If K is the number of classes
to be distinguished, a pattern classification system, or shortly classifier C'(x) is a
function or a procedure that assigns to each object x in Q a class w., with ¢ =
1,..., K. Such a classifier has to be derived from a set of examples X' = {x;,i =
1...N} of known classes y;. X*" will be called the training set and y; € we,c = 1...K
a label. Unless otherwise stated it is assumed that y; is unique (objects belong to
just a single class) and is known for all objects in X'

In section 2 training procedures will be discussed to derive classifiers C(z) from
training sets. The performance of these classifiers is usually not just related the
quality of the features (their ability to show class differences) but also to their
number, i.e. the dimensionality of the feature space. A growing number of features

} evaluation \47 characterization class labels, confidences
/. 3 [} '
update L -
— *L generalization classifiers, class models
= update 2 ‘ feature extraction
S adaptation 3 ’ ;
S prototype selection
2 o N
update features, dissimilarities

’r representation 5
‘ /4 class models, object models

‘ larger training sets ‘
— - ———» objects
better sensors or

measurement conditions

Fig. 1. The pattern recognition system



may increase the class separability, but, may also decrease the statistical accuracy
of the training procedure. It is thereby important to have a small number of good
features. In section 3 a review is given of ways to reduce the number of features
by selection or by combination (so called feature extraction). The evaluation of
classifiers, discussed in section 4, is an important topic. As the characteristics of
new applications are often unknown before, the best algorithms for feature reduction
and classification have to be found iteratively on the basis of unbiased and accurate
testing procedures.

This chapter builds further on earlier reviews of the area of statistical pattern
recognition by Fukunaga 2 and by Jain et al 16. It is inevitable to repeat and
summarize them partly. We will, however, also discuss some new directions like one-
class classifiers, combining classifiers, dissimilarity representations and techniques
for building good classifiers and reducing the feature space simultaneously. In the
last section of this chapter, the discussion, we will return to these new developments.

2. Classifiers

For the development of classifiers, we have to consider two main aspects: the basic
assumptions that the classifier makes about the data (which results in a functional
form of the classifier), and the optimization procedure to fit the model to the training
data. It is possible to consider very complex classifiers, but without efficient methods
to fit these classifiers to the data, they are not useful. Therefore, in many cases the
functional form of the classifier is restricted by the available optimization routines.

We will start discussing the two-class classification problem. In the first three
sections, 2.1, 2.2 and 2.3, the three basic approaches with their assumptions are
given: first, modeling the class posteriors, second, modeling class conditional prob-
abilities and finally modeling the classification boundary. In section 2.4 we discuss
how these approaches can be extended to work for more than two classes. In the
next section, the special case is considered where just one of the classes is reli-
ably sampled. The last section, 2.6, discusses the possibilities to combine several
(non-optimal) classifiers.

2.1. Bayes classifiers and approxrimations

A classifier should assign a new object x to the most likely class. In a probabilistic
setting this means that the label of the class with the highest posterior probability
should be chosen. This class can be found when p(w|x) and p(ws|x) (for a two class
classification problem) are known. The classifier becomes:

if p(wi|x) > p(wa|x) assign object x to w1, otherwise to ws. (1)

When we assume that p(w;|x) and p(wz|x) are known, and further assume that
misclassifying an object originating from w; to ws is as costly as vise versa, classifier
(1) is the theoretical optimal classifier and will make the minimum error. This
classifier is called the Bayes optimal classifier.



In practice p(w;|x) and p(wz|x) are not known, only samples x; are available,
and the misclassification costs might be only known in approximation. Therefore
approximations to the Bayes optimal classifier have to be made. This classifier can be
approximated in several different ways, depending on knowledge of the classification
problem.

The first way is to approximate the class posterior probabilities p(w¢|x). The
logistic classifier assumes a particular model for the class posterior probabilities:

1

Trop(owx)’ Pl =1-plusfx), (2)

pwi|x) =

where w is a p-dimensional weight vector. This basically implements a linear clas-
sifier in the feature space.
An approach to fit this logistic classifier (2) to training data X'**, is to maximize
the data likelihood L:
N

L = [ p(wrlxi)™ ®p(walx;)", (3)

where n.(x) is 1 if object x belongs to class w., and 0 otherwise. This can be done by,
for instance, an iterative gradient ascent method. Weights are iteratively updated
using;:

0
Whew = Wold + 77'8—‘;) (4)

where 7 is a suitably chosen learning rate parameter. In Ref. 1 the first (and second)
derivative of L with respect to w are derived for this and can be plugged into (4).

2.2. Class densities and Bayes rule

Assumptions on p(w|x) are often difficult to make. Sometimes it is more convenient
to make assumptions on the class conditional probability densities p(x|w): they
indicate the distribution of the objects which are drawn from one of the classes.
When assumptions on these distributions can be made, classifier (1) can be derived
using Bayes’ decision rule:

) — PP).

p(x)

This rule basically rewrites the class posterior probabilities in terms of the class

conditional probabilities and the class priors p(w). This result can be substituted
into (1), resulting in the following form:

(5)

if p(x|wi)p(wi) > p(x|w2)p(w2) assign x to wy, otherwise to wa. (6)

The term p(x) is ignored because this is constant for a given x. Any monotonically
increasing function can be applied to both sides without changing the final decision.
In some cases, a suitable choice will simplify the notation significantly. In particular,



using a logarithmic transformation can simplify the classifier when functions from
the exponential family are used.

For the special case of a two-class problem the classifiers can be rewritten in
terms of a single discriminant function f(x) which is the difference between the left
hand side and the right hand side. A few possibilities are:

f(x) = p(w1|x) — p(walx), (7)
f(x) = p(x|w1)p(w1) — p(x|w2)p(w2), (8)

_ nJD(XM) np(wl)
Fe0) = In o) 1 plan)”

The classifier becomes:
if f(x)>0 assignx to w;, otherwise to wa. (10)

In many cases fitting p(x|w) on training data is relatively straightforward. It is
the standard density estimation problem: fit a density on a data sample. To estimate
each p(x|w) the objects from just one of the classes w is used.

Depending on the functional form of the class densities, different classifiers are
constructed. One of the most common approaches is to assume a Gaussian density
for each of the classes:

plcke) = N, B) = o (—5 (- w2 k- )} ()

where p is the (p-dimensional) mean of the class w, and ¥ is the covariance matrix.
Further, |3| indicates the determinant of ¥ and ¥~ its inverse. For the explicit
values of the parameters p and ¥ usually the maximum likelihood estimates are
plugged in, therefore this classifier is called the plug-in Bayes classifier. Extra com-
plications occur when the sample size N is insufficient to (in particular) compute
¥.~1. In these cases a standard solution is to regularize the covariance matrix such
that the inverse can be computed:

Th =3+ AT, (12)

where Z is the p x p identity matrix, and A is the regularization parameter to set
the trade off between the estimated covariance matrix and the regularizer Z.

Substituting (11) for each of the classes w; and wy (with their estimated gy, o
and X1, ¥,) into (9) results in:

1 N _ 1 _ _
f(x) = §XT(22 t— g l)x + 5(#121 P 12925 I)Tx

1. i L ro 1 1 p(w1)
—gt Y+ M2 Xy Mg — §ln|21| W+ §ln|22| +lnm- (13)
This classifier rule is quadratic in terms of x, and it is therefore called the normal-
based quadratic classifier.

For the quadratic classifier a full covariance matrix has to be estimated for each
of the classes. In high dimensional feature spaces it can happen that insufficient



data is available to estimate these covariance matrices reliably. By restricting the
covariance matrices to have less free variables, estimations can become more reliable.
One approach the reduce the number of parameters, is to assume that both classes
have an identical covariance structure: ¥; = Y9 = X. The classifier simplifies to:

_1 Ty-1, _ 1 751 1 7ot p(w1)
f(x)—i(lh—llq) D S 2#12 N1+2H22 ”2+lnp(w2) (14)

Because this classifier is linear in terms of x, this classifier is called the normal-based
linear classifier.

For the linear and the quadratic classifier, strong class distributional assumptions
are made: each class has a Gaussian distribution. In many applications this cannot
be assumed, and more flexible class models have to be used. One possibility is to
use a 'non-parametric’ model. An example is the Parzen density model. Here the
density is estimated by summing local kernels with a fixed size h which are centered
on each of the training objects:

N
p(x'w) = % ZN(X; Xi, hZ), (15)
1=1

where Z is the identity matrix and h is the width parameter which has to be op-
timized. By substituting (15) into (6), the Parzen classifier is defined. The only
free parameter in this classifier is the size (or width) h of the kernel. Optimizing
this parameter by maximizing the likelihood on the training data, will result in the
solution h = 0. To avoid this, a leave-one-out procedure can be used °.

2.3. Boundary methods

Density estimation in high dimensional spaces is difficult. In order to have a reliable
estimate, large amounts of training data should be available. Unfortunately, in many
cases the number of training objects is limited. Therefore it is not always wise to
estimate the class distributions completely. Looking at (1), (6) and (10), it is only
of interest which class is to be preferred over the other. This problem is simpler
than estimating p(x|w). For a two-class problem, we just a function f(x) is needed
which is positive for objects of w; and negative otherwise. In this section we will list
some classifiers which avoid estimating p(x|w) but try to obtain a suitable f(x).
The Fisher classifier searches to find a direction w in the feature space, such
that the two classes are separated as well as possible. The degree in which the two
classes are separated, is measured by the so-called Fisher ratio, or Fisher criterion:

_ ey — m2|2

T &i-sd
Here m; and mq are the means of the two classes, projected onto the direction w:
m; = wTul and mg = wTuz. The s; and sy are the variances of the two classes
projected onto w. The criterion therefore favors directions in which the means are
far apart and the variances are small.

(16)



This Fisher ratio can be explicitly rewritten in terms of w. First we rewrite
2= e WIx—wlp )2 =%, wl(x— p)(x— u)Tw = wl'S.w. Second
we write (my —mg)? = (W) — wlpp)? = wT (g — pa) (11 — p15)"w = W' Spw.

The term Spg is also called the between scatter matrix. J becomes:

| — mg|? B wT Spw B wl Spw (17)
T 2452 wISiw+wIlSw  wlSyw’
where Sy = S1 + S5 is also called the within scatter matrix.
In order to optimize (17), we set the derivative of (17) to zero and obtain:
(wTSpw)Sww = (wT Syw)Spw. (18)

We are interested in the direction of w and not in the length, so we drop the scalar
terms between brackets. Further, from the definition of Sp it follows that Spw is
always in the direction g, — p,. Multiplying both sides of (18) by Sy;' gives:

W~ St (g — 1) (19)
This classifier is known as the Fisher classifier. Note that the threshold b is not
defined for this classifier. It is also linear and requires the inversion of the within-
scatter Sy . This formulation yields an identical shape of w as the expression in
(14), although the classifiers use very different starting assumptions!

Most classifiers which have been discussed so far, have a very restricted form
of their decision boundary. In many cases these boundaries are not flexible enough
to follow the true decision boundaries. A flexible method is the k-nearest neighbor
rule. This classifier looks locally which labels are most dominant in the training set.
First it finds the k nearest objects in the training set NN (x), and then counts the
number of these neighbors are from class w; or ws:

if n; >ng assign x to w;, otherwise to wo. (20)

Although the training of the k-nearest neighbor classifier is trivial (it only has to
store all training objects, k can simply be optimized by a leave-one-out estimation),
it may become expensive to classify a new object x. For this the distances to all
training objects have to be computed, which may be prohibitive for large training
sets and high dimensional feature spaces.

Another classifier which is flexible but does not require the storage of the full
training set is the multi-layered feed-forward neural network*. A neural network is a
collection of small processing units, called the neurons, which are interconnected by
weights w and v to form a network. A schematic picture is shown in Figure 2. An
input object x is processed through different layers of neurons, through the hidden
layer to the output layer. The output of the j-th output neuron becomes:

0j(x) = h; (Z vihz'(W?X)> (21)

(see Figure 2 for the meaning of the variables). The object x is now assigned to the
class j for which the corresponding output neuron has the highest output o;.



