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INTRODUCTION

This volume contains lectures given at the Saint-Flour Summer School of
Probability Theory during the period August 17th - September 3d, 2000.
This school was Summer School 2000 of the European Mathematical Society.

We thank the authors for all the hard work they accomplished. Their
lectures are a work of reference in their domain.

The School brought together 90 participants, 39 of whom gave a lecture
concerning their research work.

At the end of this volume you will find the list of participants and their
papers.

Thanks. We thank the European Math Society, the European Commission
DG12, Blaise Pascal University, the CNRS, the UNESCO, the city of Saint-
Flour, the department of Cantal, the Region of Auvergne for their helps and
sponsoring.

Finally, to facilitate research concerning previous schools we give here the
number of the volume of “Lecture Notes” where they can be found:

Lecture Notes in Mathematics

1971 : n® 307 —1973 : n°® 390 — 1974 : n® 480 - 1975 : n° 539 -
1976 : n° 598 — 1977 : n° 678 — 1978 : n°® 774 - 1979 : n°® 876 -
1980 : n® 929 — 1981 : n° 976 — 1982 : n° 1097 — 1983 : n°® 117 -
1984 : n° 1180 —1985-1986 et 1987 : n° 1362 — 1988 : n® 1427 —
1989 : n° 1464 — 1990 : n° 1527 — 1991 : n° 1541 — 1992 : n° 1581 -
1993 : n° 1608 — 1994 : n° 1648 — 1995 : n° 1690 — 1996 : n° 1665 —
1997 : n® 1717 — 1998 : n® 1738 — 1999 : n® 1781 — 2000 : n° 1816

Lecture Notes in Statistics

1986 : n° 50
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Summary. The theory of Dirichlet forms, Markov semigroups and associated pro-
cesses on finite and infinite dimensional spaces is reviewed in an unified way.
Applications are given including stochastic (partial) differential equations, stochas-
tic dynamics of lattice or continuous classical and quantum systems, quantum fields
and the geometry of loop spaces.

0 Introduction

The theory of Dirichlet forms is situated in a vast interdisciplinary area which
includes analysis, probability theory and geometry.

Historically its roots are in the interplay between ideas of analysis (calcu-
lus of variations, boundary value problems, potential theory) and probability
theory (Brownian motion, stochastic processes, martingale theory).

First, let us shortly mention the connection between the “phenomenon” of
Brownian motion, and the probability and analysis which goes with it. As
well known the phenomenon of Brownian motion has been described by a
botanist, R. Brown (1827), as well as by a statistician, in connection with
astronomical observations, T.N. Thiele (1870), by an economist, L. Bache-
lier (1900), (cf. [455]), and by physicists, A. Einstein (1905) and M. Smolu-
chowski (1906), before N. Wiener gave a precise mathematical framework for
its description (1921-1923), inventing the prototype of interesting probability
measures on infinite dimensional spaces (Wiener measure). See, e.g., [394] for
the fascinating history of the discovery of Brownian motion (see also [241],
(16] for subsequent developments).

This went parallel to the development of infinite dimensional analysis (calcu-
lus of variation, differential calculus in infinite dimensions, functional analy-
sis, Lebesgue, Fréchet, Gateaux, P. Lévy...) and of potential theory.
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Although some intimate connections between the heat equation and Brow-
nian motion were already implicit in the work of Bachelier, Einstein and
Smoluchowski, it was only in the 30’s (Kolmogorov, Schrédinger) and the
40’s that the strong connection between analytic problems of potential the-
ory and fine properties of Brownian motion (and more generally stochastic
processes) became clear, by the work of Kakutani. The connection between
analysis and probability ( involving the use of Wiener measure to solve cer-
tain analytic problems) as further developed in the late 40’s and the 50’s,
together with the application of methods of semigroup theory in the study
of partial differential equations (Cameron, Doob, Dynkin, Feller, Hille, Hunt,
Martin, ...).

The theory of stochastic differential equations has its origins already in work
by P. Langevin (1911), N. Bernstein (30’s), I. Gikhman and K. Ito (in the
40’s), but further great developments were achieved in connection with the
above mentioned advances in analysis, on one hand, and martingale theory,
on the other hand.

By this the well known relations between Markov semigroups, their genera-
tors and Markov processes were developed, see, e.g. [162], [160], [207], [208],
(209], [276], [463).

This theory is largely concerned with processes with “relatively nice charac-
teristics” and with “finite dimensional state space” F (in fact locally compact
state spaces are usually assumed). From many areas, however, there is a de-
mand of extending the theory in two directions:

1) “more general characteristics”, e.g. allowing for singular terms in the gen-
erators
2)infinite dimensional (and nonlinear) state spaces.

As far as 1) is concerned let us mention the needs of handling Schrédinger
operators and associated processes in the case of non smooth potentials, see
[70].

As far as 2) is concerned let us mention the theory of partial differential
equations with stochastic terms (e.g. “noises”), see, e.g. [201], [28], [37], [38],
[129], [127] the description of processes arising in quantum field theory (work
by Friedrichs, Gelfand, Gross, Minlos, Nelson, Segal...) or in statistical me-
chanics, see, e.g. [16], [15], [344], [242]. Other areas which require infinite
dimensional processes are the study of variational problems (e.g. Dirichlet
problem in infinite dimensions) [278], the study of certain infinite dimen-
sional stochastic equations of biology, e.g. [474], the representation theory of
infinite dimensional groups, e.g. [68], the study of loop groups, e.g. [30], [12],
the study of the development of interest rates in mathematical finance, e.g.
416), [337], [502].

The theory of Dirichlet forms is an appropriate tool for these extensions.
In fact it is central for it to work with reference measures p which are nei-
ther necessarily “flat” nor smooth and in replacing the Markov semigroups
on continuous functions of the “classical theory” by Markov semigroups on
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L?(u)-spaces (thus making extensive use of “Hilbert space methods” [211]).
The theory of Dirichlet forms was first developed by Feller in the 1-dimensional
case, then extended to the locally compact case with symmetric genera-
tors by Beurling and Deny (1958-1959), Silverstein (1974), Ancona (1976),
Fukushima (1971-1980) and others (see, e.g., [244], [258]).(Extensions to non
symmetric generators were given by J. Elliott, S. Carrillo-Menendez (1975),
Y. Lejan (1977-1982), a.a., see, e.g. [367]).

The case of infinite dimensional state spaces has been investigated by S. Al-
beverio and R. Hgegh-Krohn (1975-1977), who were stimulated by previous
analytic work by L. Gross (1974) and used the framework of rigged Hilbert
spaces (along similar lines is also the work of P. Paclet (1978)). These studies
were successively considerably extended by Yu. Kondratiev (1982-1987), S.
Kusuoka (1984), E. Dynkin (1982), S.Albeverio and M.Rockner (1989-1991),
N. Bouleau and F. Hirsch (1986-1991), see [39], [147], [278], [367], [230], [172],
465], [234], [235)], [236], [237], [238], [239], [256].

An important tool to unify the finite and infinite dimensional theory was
provided by a theory developed in 1991, by S. Albeverio, Z.M. Ma and M.
Rockner, by which the analytic property of quasi regularity for Dirichlet forms
has been shown in “maximal generality” to be equivalent with nice properties
of the corresponding processes.

The main aim of these lectures is to present some of the basic tools to un-
derstand the theory of Dirichlet forms, including the forefront of the present
research. Some parts of the theory are developed in more details, some are
only sketched, but we made an effort to provide suitable references for further
study.

The references should also be understood as suggestions in the latter sense, in
particular, with a few exceptions, whenever a review paper or book is avail-
able we would quote it rather than an original reference. We apologize for
this “distortion”, which corresponds to an attempt of keeping the reference
list into some reasonable bounds - we hope however the references we give
will also help the interested reader to reconstruct historical developments.
For the same reason, all references of the form “see [X]” should be understood
as “see [X] and references therein”.
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1 Functional analytic background: semigroups,
generators, resolvents

1.1 Semigroups, Generators

The natural setting used in these lectures is the one of normed linear spaces
B over the closed algebraic field K = R or C. Some of the results are however
depending on the additional structure of completeness, therefore we shall
assume most of the time that B is a Banach space.
We are interested in describing operators like the Laplacian A and the
associated semigroup (heat semigroup), and vast generalizations of them.
Let L = (L, D(L)) be a linear operator on a normed space B over K, defined
on a linear subset D(L) of B, the definition domain of L.
We say that two such operators L;,i = 1,2 are equal if D(L,) = D(L,) and
Liu = Lou,Vu € D(Ll)
L is said to be bounded if 3C > 0 s.t. ||Lu| < C||u||,Vu € D(L) = B.
We then have, setting ||L|| = sup ||Lu| € [0, +o0]

u€B,[|u|<1

L bounded & ||L|| < +o0.

L is said to be continuous at 0 (¢ D(L)!) if u, — 0,u, € D(L) implies
Lu, — 0,n — oo.

L is said to be continuous if u, — u,u, € D(L) implies

u € D(L) and Lu,, — Lu,n — oo.

One easily shows

L bounded < L continuous at 0 < L continuous.

We define L = a1 L1 + as Ly, a; € K1 = 1,2, by

D(L) = D(Ly) N D(Lsy), Lu = a1 Lyu + asLyu,Vu € D(L).

Moreover we define for Ly, Lo

LiLou = Ll(Lgu),Vu € D(L1L2) = L]D(Lg) = {u S BILQU € D(Ll)}

Definition 1. A linear bounded operator A on a normed linear space B is a
contraction if ||A|| < 1. A family T = (T3)t>0 of linear bounded operators on
B is said to be a strongly continuous semigroup or Cy-semigroup if

i) To = 1 (the identity on B)
1) ltifgl Tiu = u,Vu € B (strong continuity)

1) (Ty)e>0 1s a semigroup i.e.
TgTs = TsTt = TSH,Vt, s> 0.

(T;)¢>0 is said to be a Co-semigroup of contractions or a

Co-contraction semigroup if, in addition,
w) Ty s a contraction for all t > 0.
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Exercise 1. Show that i),ii),iv) imply that ¢ — T,u is continuous, for all
t>0,YVu € B.

Definition 2. Let T = (T3)i>0 be a Cy-contraction semigroup on B. The
linear operator L is said to be generator of T if:

i) D(L) = {u € B| ltilrg 1(Tyu — ) exists in B}
ii) Lu = 1&8 1(Tyu —u)Vu € D(L)

Exercise 2. Show that the “strong derivative” %Ttu = liiﬁ)l M exists

in B, for all w € D(L) and d%Tzu = LTiu =T, LuVt > 0,Yu € D(L).
In particular Lu = %Ttultzo,\/u € D(L).

It is easy to convince oneself that even simple operators like the
Laplacian A are not bounded, e.g. in B = L%(R%). For this reason it is useful
to introduce the concept of a closed operator.

Definition 3. A linear operator L in B is called closed if u,, € D(L), up, — u
as n — oo, Lu, convergent as n — oo, in B, imply that w € D(L), and
Lu,, — Lu.

Exercise 3. Show that L closed < G(L) closed in B x B, where G(L) =

{{w, Lu},u € D(L)} is the graph of L.

Proposition 1. LetT = (T};);>0 be a Cy-contraction semigroup on a Banach
t

space B, with generator L. Then Tyu = v+ [TsLuds,u € D(L) where the
0

integral on the r.h.s is to be understood in the natural sense of strong integrals
on Banach spaces (Bochner integral ! ).

Proof. This follows immediately from Exercise 2, via integration. a

Proposition 2. The generator L of a Cq-contraction semigroup T' = (T}):>0
on a Banach space is a closed operator.

Proof. This easily follows from Proposition 1, the strong continuity (Exercise
1), the fact that for u,, = w, Lu,, convergent to v, || TsLu,| < || Lu,|| < C, for
some C' > 0, independent of n, as Lu,, converges, and dominated convergence.

0

Proposition 3. The generator L of a Cy-contraction semigroup T = (1}) >0
on a Banach space is densely defined.

! See, e.g. [506], p.132
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t
Proof. One easily shows that for any u € B, with v, = [ Tyuds :
0

1 1
— [tgr —ve] = = [Tyvy — o) = Thu —w, asr |0
r r

hence v, € D(L).
On the other hand
L — u,t ] 0, yielding an approximation of an arbitrary v € B by elements

% in D(L). 0

Corollary 1. IfT = (T})t>0,S = (St)t>0 are two Cy-contraction semigroups
on a Banach space with the same generator L, then T, = S; Vt > 0.

Proof. From Exercise 2 we have easily EdgTi_sSsu =0,Y0 <s <t,Vue D(L)
from which Tiu = SiuVu € D(L) follows, hence T; = S;, these being bounded
and D(L) being dense. O

The above corollary implies that the usual notation T; = el t > 0 for
the semigroup with generator L is justified.
The question when a given densely defined linear operator L is the generator
of a Cy-contraction semigroup is answered by the theory of Hille-Yosida. For
this we recall some basic definitions.
If L is a linear injection (1-1 map), then L~! is defined on D(L~!) = LD(L),
by L7y =v,u € D(L™!), with v s.t. Lv = u.
For a linear operator L the resolvent set is defined by:
p(L)={a €K|a—L:D(L) — B is an injection onto B i.e.
D((a — L)~') = B. Moreover (a — L)~! is bounded. }

Exercise 4. Show that if p(L) # 0 then p(L) is closed (use that (o — L)~?
for a € p(L) is bounded).

The spectrum o (L) of L is by definition the complement in K of p(L).
For a € p(L),Go = (v — L)~" (which exists as a bounded operator on B) is
called the resolvent of L at a.

(Ga)aep(r) is called the resolvent family associated to L.

Exercise 5. Show that (Ga)aep(r) satisfies the resolvent identity
Ga—Gpg=(f—a)GaGp = (B —a)GsGqa,Va,B € p(L).
Proposition 4. Let L be the generator of a Cy-contraction semigroup on a

Banach space. Then (0,00) C p(L) and for any

+o0
Rea>0:(a— L)y lu=Gou= [ e *Tiudt
0

(where the integral is in Bochner’s sense) and |Ga| < Ria.
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+oo
Proof. Set Ro = [ e™*'Tdt.
0

It is easily seen that (o — L)R,u = u,Yu € B, Rea > 0. Since L is closed
for all w € D(L) : LRy,u = RqLu, from which one deduces that o — L is
injective for Rea > 0 (in particular for « > 0) and Ry = G4. The bound in
Proposition 4 then follows from the definition of R,. O

Remark 1. G is the Laplace transform of T; (in the sense given by
Proposition 4).

Theorem 1. (Hille-Yosida, for Cy-contraction semigroups):
Let L be a linear operator in a Banach space B. The following are equivalent:

i) L is the generator of a Cy-contraction semigroup T = (Tt)y>0 on B.
it) L is densely defined and
a) (0,00) C p(L)
B) la(ea—L)7 <1 Va>0
Corollary 2. If ii) is fullfilled then L is closed and uniquely determined.

Proof. ii) implies i) by Theorem 1 and hence that L is closed by Proposition
2. The rest follows from Corollary 1. 0O

Proof. (of Theorem 1)

i) = ii): From i) we have L closed, densely defined (Propositions 2,3). That
(0,00) C p(L) and ii) holds follows from Proposition 4.

ii) = i): For details we refer to, e.g.[413]. In the proof the following Proposi-
tion is useful.

Proposition 5. Let L satisfy the conditions it) of Theorem 1. Set G, =
(a — L)™', a > 0. Then

i) aGau — u in B, as a = 400

ii) Define L(®) = —a + a?Gq,a > 0 (“Yosida approzimation of L”). Then
L(® 4s bounded, D(L'®) = B, L{u — Lu,a t 4+oco,u € D(L), and
ety converges as o T +oo for all w € D(L) to T,u, where T, is a
Co-contraction semigroup, with generator L. Moreover T, coincides with
the semigroup T; generated by L mentioned in ).

Proof. For u € D(L) we have
laGau — ul| = fla(a — L)~"u — (a - L)(a — L)~"u]
= || L(e — L) ul|
— (@ - L)' Lu|
< é]]LuH — 0, T 400

(where we used Proposition 4). But aG, is a contraction by Proposition 4
and D(L) is dense by assumption, hence aG,u — v as a1 +o0, for all u € B.
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From this it is easy to see that aG,Lu — Lu,u € D(L), as a T +o0, and
thus ¥y = —au + a?Geu = aGoLu — Lu as a T +00.
The rest follows by realizing that

() =, 1" 2

[ n —

etL u:E :_'L(a) u:eate aGau
n

n=0

Remark 2. Another useful “approximation formula” for 7; in terms of the
resolvent is the following one:

Tou= lim (%) (Gau)" Vue B

n— 00
(see, e.g., [413], p. 33).

Remark 3. In the formulation of Hille-Yosida’s theorem i) can be replaced
by a statement involving the generator of a Cy-contraction resolvent family
according to the following definition.

Definition 4. A Cy-contraction resolvent family is a family (G4)a>o0 such
that
aGau = u,a T 400, ||aGy| < 1,a >0

and the resolvent identity in Exercise 5 holds.
Hille-Yosida’s theorem holds then with i) replaced by:

i’) L is the generator of a Co-contraction resolvent family (Ga)a>o tn the
sense that G, = (a — L)™' on B. There is a one-to-one correspondence
between Cy-contraction semigroups (T;)i>0 and Co-contraction resolvent
families (Ga)a>0 given by the Laplace-transform formula in Proposition
4 (and Remark 1) resp. Proposition 5 or Remark 2 after Proposition 5.

Hille-Yosida’s characterization of generators L involves the resolvent G.
A pure characterization of L, under some “direct restrictions” on L is given
by the Lumer-Phillips theorem, for which we need a definition.

Definition 5. The duality set F(u) for any element u in a Banach space B
is defined by

F(u) = {u" € B*[(u", u) = [|u]|® = [lu"||?},

where B* is the dual of B (the space of continuous linear functionals on B)
and (,) is the dualization between B and B*.

An operator L is dissipative on B if for any u € D(L) there exists some
u* € F(u) such that Re(u*, Lu) < 0.

(—L is then said to be accretive).



