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Preface

These notes are taken from seminars on the spectral theory of random Schrodinger
operators, held at the University of Heidelberg during 1988 and 1989. Addressed to the
non-specialist they are intended to provide a brief and elementary introduction to some branches
of this field. An attempt is made to show some of the basic ideas in statu nascendi, and to
follow their evolution from simple beginnings to more advanced results. The term "genetic" in
the title refers to this procedure.

The main theme is the interplay between the spectral theory of Schrodinger operators and
probabilistic considerations. After developing a general intuitive picture to give the reader some
orientation in the field, we elaborate on two topics which in the history of the subject have
proved to be of major conceptual importance. We consider on the one hand the Laplacian in a
random medium and study its spectrum near the left end, where large fluctuations in the
medium play an essential role. Expressed in terms of Wiener measure, this amounts to large
deviation problems for Brownian motion. Guided by these questions we show how the notion
of entropy has undergone mutations, and explain its relation to the spectral theory of the
Laplacian. On the other hand we specialize to one-dimensional space and consider there
Schrodinger operators with general ergodic potentials. We explain how certain aspects of the
Floquet theory can be extended from periodic to general potentials. Based on this extension, the
absolutely continuous spectrum of one-dimensional Schrodinger operators is studied. Here the
notion of rotation number and its relation to Weyl's theory of singular Sturm-Liouville
operators play an important role.

An effort is made throughout to give heuristic arguments before going to rigorous proofs.
By means of a few characteristic problems and their solution we attempt to explain basic ideas
and concepts in the simplest possible setting rather than to collect the most refined results.

These notes are dedicated by a grateful disciple to Frank Spitzer on the occasion of his

sixty fifth birthday.
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1. Introduction

(1.1)

(1.2)

(1.3)

(1.4)

We consider Schrodinger operators

H=-A+q,
2 2
where A =—— + ... +—— denotes the Laplacian in Rd, d=>1,and
ax% axi

d . . .
q: R™ > (= o, + o] is a random potential, and address ourselves to the following

general problem:

What is the spectrum Y. =.(q) of the operator H = H(q) and what do the solutions
g, to the equation Hgy =4 - g;, A € 2, look like? How does the answer depend on
the degree of disorder of the potential q?

A solution g, to the equation

Hg, =X - g,
is called an eigenfunction corresponding to the eigenvalue A, if g, € L2(Rd). The
spectrum 2, is the union of the pure point spectrum zpp, which is defined as the
closure of the set of eigenvalues, and of the continuous spectrum XC, the precise
definition of which is postponed to the end of this section; roughly speaking, A
belongs to ):c, if equation (1.3) has approximate solutions in LZ(Rd) which are
orthogonal to the space spanned by the eigenfunctions. As will be seen later, this notion
has still to be refined by splitting EC into an absolutely continuous part and a singularly
continuous part.

Problem (1.2) has at least two quite different origins coming from (i) solid

state physics and (ii) purely mathematical considerations.

(1) In order to see how it arises in solid state physics, we consider a solid

5 d . . .
whose atoms are located at sites x; € R, i > 1, and a pair potential

|
®: R — (= oo, + oo],
describing the interaction between a particle and an atom. In the one-body

approximation one considers the Schrodinger operator (1.1) with potential



q(x) = Z(D(xfxi) , xeRY.
i

In the case of a perfect crystal, the x; are points of a lattice, e.g. of the lattice Zd, so that
q is a deterministic periodic function. In general there are random deviations from the
lattice structure and the points x; are randomly distributed. One is in a case of maximal
disorder if the x; are distributed according to a Poisson point process on RY. The degree
of randomness may range from periodic structures (respectively periodic potentials q) to

structures with strong randomness (respectively to strongly mixing potentials q).

degree of randomness

_)

perfect crystal Poisson points

periodic potential potential of Poisson type (1.5)

Figure 1

The disorder gives rise to qualitatively new properties of the solid state which cannot
be understood merely on the basis of perturbations around the case of perfect order.
It is a fundamental problem to understand the conditions on the potential q under
which the solutions g, of (1.3) are exponentially decreasing at infinity (localization)
or wavelike (extended states). Physically, the transition from extended states to
localized states corresponds to the transition from a metal to an insulator (see
Anderson (1958)).

(i1) On the mathematical side one tries to understand the spectral properties of the
operator (1.1) for a given deterministic potential q. Until the seventies mathematical

results existed for three classes of potentials. If (x) — + e as IxI = oo, H has purely -



discrete spectrum. A characteristic example is the case of a vibrating membrane D with

fixed boundary, which formally corresponds to the potential

0, xe D
q(x) = { ,
+ oo, xg D

where D denotes a bounded open set in R". The second class is the class of potentials
rapidly decreasing at infinity, which is treated by scattering theory. A characteristic
example is given by a non-negative potential with compact support where the spectrum
Y. = [0,00) is purely continuous and where one has wavelike solutions g, forAe 2.
Thirdly, in the case of a periodic potential, one has purely continuous spectrum and
Bloch waves as eigenstates. In all other cases however, if ¢ is bounded and oscillating
but not strictly periodic, very little is known about the spectral properties of H. Since it
is difficult to get results for an individual non-periodic bounded ¢, one randomizes the
problem and contents oneself with asking what the spectral behaviour of H is for typical
bounded random potentials. A similar probabilistic approach was introduced by Bloch
and Pélya (1932) in order to get estimates about the number of real roots of a real
polynomial of high degree. This problem serves Kac as a striking example illustrating
the nature and power of probabilistic reasoning, see p. 11 in Kac (1959).

From these remarks on the different origins of problem (1.2) it is already clear
that it has connections with many fields, ranging, as we will see, from Statistical
Mechanics to the theory of integrable Hamiltonian systems. This diversity of the subject
makes its beauty but also its difficulty. There exists a rich literature, for example a
monograph of encyclopedic character by Carmona and Lacroix (1990), and
also several expositions and review papers. A sample of the more recent ones are
Spencer (1986), Cycon, Froese, Kirsch and Simon (1987), Martinelli and Scoppola
(1987), Bellissard (1989), Pastur (1989). It is the aim of the present paper, to give an
elementary introduction to some basic problems and ideas in the field outlined above and
to follow their evolution approximately in historical order. The paper assumes no
particular background. It is addressed to the general reader and mainly deals with the

following questions.



(i) What is the heuristic picture underlying problem (1.2)? What kind of mathematical

questions arise from this picture? What are the relations between its several aspects?

(ii) How did ideas evolve from the simple beginnings of spectral theory to more
advanced results related to the clarificaton of (1.2)? How did, conversely,
probabilistic considerations lead to a mutation and advancement of classical

theories?

Sections 2 - 4 are devoted to question (i). Here a general heuristic picture is drawn
which suggests, roughly speaking, a tendency to localization with increasing disorder.
In sections 5 and 6 we deal with question (i) by way of two characteristic
problems. Along with their solution, we try to explain how the classical notions of
entropy and of Floquet exponent were extended to general concepts of wide
applicability.

In section 2 we begin with two quite elementary examples. The first, which is
located at the right end point on the scale of disorder in Figure 1, deals with one-
dimensional potentials of Poisson type. The second example is located at the left end
point on the scale in Figure 1 and concerns one-dimensional periodic potentials. Guided
by these examples we sketch in section 3 some heuristic ideas concerning localization
and the asymptotic behaviour of the density of states near to the bottom of the spectrum
(so called Lifschitz tails). Section 4 contains a discussion about the present mathematical
status of these ideas and some of the main open problems are mentioned. In order to
illustrate question (ii), we have chosen two key results by Donsker and Varadhan
(1975a,b,c) and by Kotani (1984) respectively, whose proofs are conceptually
significant and basic for many other work too, and we try to explain their contents in
detail in sections 5 and 6. Theorem 1, which can be seen as generalization of example 1
to higher dimensions, deals with Lifschitz tails in a Poisson model. Along with a sketch
of its proof in section 5, an extension of the Boltzmann theory of entropy is given.
Theorem 2 is inspired by example 2. It says, roughly speaking, that randomness implies
the absence of the absolutely continuous spectrum, if the dimension is one. Its proof
requires a far reaching extension of the Floquet theory as will be explained in section 6.
Section 5 and 6 are formally independent of each other. Parallel reading however could
help the reader to get a balanced picture of probabilistic and deterministic aspects of the

theory: on the random side of Figure 1 large fluctuations in the medium and



(1.6)

(1.7)

correspondingly the theory of large deviations are relevant, whereas on the deterministic
side conserved quantities and the notion of a generalized Floquet exponent play an
essential role. In the final section we reflect the meaning of what has been done in the
previous sections and we reconsider the development from the simple vibrating string to
the spectral theory of infinitely many randomly coupled vibrating membranes.

Before we begin with the discussion of the two examples let us give some
definitions. We denote by LZ(Rd) the space of measurable functions u: R C
with finite norm llull = ("-lu(x)l2 dx)""* and by H,, the subspace of LA(RY) spanned
by the eigenfunctions of H. The continuous spectrum 2. is defined as follows. A
number A€ R belongs to Ec if and only if there exists a sequence u, € Lz(Rd) such
that u, is orthogonal to H,,, llu Il = 1 for all ne N, and lI(H - A)u, Il 5 0 asn — o

The following general probabilistic framework is used. We denote by Q a
subspace (which has to be specified according to the context in which we are working)
of the space of measurable functions q: RY 5 (oo, + o] and by (Q, F, P) a probability
space. The shift operator 6,: Q — Q is defined by 6,q(y) = q(x +y) for x,ye R’

We assume that P satisfies
P(§,A) = P(A) for Ae ¥, xeR’ (shiftinvariance)
and

if Ae ¥ and P(OA)AA)=0 forall xeRd,
then P(A)=0 or P(A)=1 (ergodicity).

The ergedicity of P implies that many quantities are selfaveraging, see for example
(2.6) below. We say a property holds almost everywhere with respect to P
(abbreviated by P-a.e.), if the set of potentials with this property has P-measure 1.

In the following we do not enter into questions about the selfadjointness of the
operator H or into measurability questions, and refer instead to the literature, e.g. to

Carmona and Lacroix (1990).



2. Two simple examples

In order to get a feeling for problem (1.2) we begin with two quite elementary one-

dimensional examples, which are chosen as extreme cases on the scale of disorder in Figure 1.

2.1. Example 1

In the first example we consider the one-dimensional potential of Poisson type

2.1) qx) =, d(x-x),

ieZ

where x, i€ Z, are the points of a Poisson process on R!, say with average density 1,

and where

5.5 o {+oo, x| £ R
(2.2) =1 o, X > R

is a hard core potential of a given radius R > 0. The corresponding operator H = H(q) is

. 2 . ;
just the operator —ad—z in the random region R\ U [x; =R, x; + R] = \U D; with
X

ieZ ieZ
Dirichlet boundary conditions, see Figure 2.
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(2.3)

(2.4)

(2.5)

The spectral behaviour of H is the following:

2 = zpp = [0,00), the eigenvalues are P — a.e. dense in 2,

and

the eigenfunctions have compact supports P —a.e..

This is obvious since the D,, i€ Z, can be viewed as strings of random length ID;!

which vibrate independently of each other. The eigenvalues corresponding to a string D,

with D, # @ are given by
7(2 X j2

T

L S—
v

The numbers { ID,|, i€ Z } and therefore the eigenvalues (A (.)€ ZxN with
D,;#0 } are P—a.e. dense in [0,e0) and the corresponding eigenfunctions are localized
in the intervals D, . This shows (2.3) and (2.4).

The solutions g, to (1.3) and the eigenvalues are random. For general ergodic
potentials they are no longer computable explicitly. It is therefore appropriate to
introduce another notion, which is defined via an averaging procedure, and hence non-
random. This so-called integrated density of states N gives information about "the

number of eigenvalues per unit interval”, and is defined as follows. For L > 0 we
L 2 : : . v
denote by HY  the operator — -‘13 + q in the interval (-L, +L) with Dirichlet

dx
boundary conditions. Then

N = lim N

Lo
is the limit of the empirical distributions
L) PP 5
N (k)_I#{lel\mi <A }.2eR,
(L . ‘ (L) .
where A; 7, 1 2 1, are the eigenvalues of the operator H . In the case of the Poisson

potential (2.1), it is easy to show the existence of the limit (2.6) and to compute, for

A=0,



. - D : Aipll =
(2.8) N(A) = Lli‘Lz_lL' #4 ()eZx N:D; © (-L#L), j < / DI} =

= E[L VD],

where [x] denotes the greatest integer which is < x. In particular, one gets from (2.8) the

following asymptotic behaviour of N near the boundaries of the spectrum:

e—n/ﬁ ,A—>0
(2.9) N(A) ~

which more precisely means

(2.10) lim VA log NU) = -7,
A0
respectively
(2.11) lim meR L N =1 .
Ao '

The asymptotic behaviour of N as A — oo is, up to a constant factor, clearly the same as
in the free case q = 0, where the integrated density of states is

N, () =% (max {(),X})”Z. To see the probabilistic meaning of the asymptotic
behaviour of N as A — 0 we denote by D(r) the open ball of radius r, which in the
present one-dimensional case is just an interval of length 2r, and to a given A > 0 we

determine the radius r(A) = LV_ so that the lowest Dirichlet eigenvalue of the operator
2YA

— 4% ip the interval D(r(A)) is A. Then we have

dx?

(2.12) N) ~ e""/ﬁz P(D(r(X)) is free of Poisson points), A—0.
That is, near to the bottom of the spectrum, the essential contribution to N(A) comes
from large intervals D, which have approximately A as lowest Dirichlet eigenvalue and

which are free of Poisson points (see Figure 2 above).



2.2. Example 2

In the second example we consider a potential which is a continuous periodic
function q: R! = R, say with period L. Formally this case can be subsumed under the
general framework indicated at the end of the introduction as follows. One chooses a
point @ equidistributed in the interval [0,L] and deals with the random potential 6 q
instead of q. For the purpose of this section such a randomization is not needed, and we

consider here the deterministic operator

2.13) H= -8 1 g, _sw<x<csos,
dx2

and the corresponding equation
(2.14) Hg, = X - g . Ae C.

The following result holds true. There exist real numbers a, , i 2 0, with

—eo < @) < 4 A, <8y <, <., such that

(2.15) 2 =2, =\ [azi,a54] ,

120

and for A € \U (ay;, azj41) there exist two linearly independent solutions of (2.14) of
20

the form
(2.16) g,(hx) = py(Aix) etiox (e R,

where p,(A; - ) is a complex valued function with period L and the phase c(}) is a real
number. The intervals [ay;, a,;, 1] are the allowed energy bands and the (a5 ;, a,, ) are
(possibly empty) gaps in the spectrum,; the solutions (2.16) are called Bloch waves.

We indicate the four main steps of the proof of (2.15) and (2.16) with a view
towards extensions in later sections. Details can be found for example in the booklet by

Magnus and Winkler (1979).
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Step 1. Transformation of equation (2.14) into a dynamical system.
This step does not rely on the periodicity of q, it can be performed for arbitrary one-

dimensional potentials. One can write (2.14) in the form

(2.17) (g,*(x)) =( o )(g?‘(x)) :
g,(x) qx)-r 0 g,(x)
with g'x(x) = % g,(x) . We denote by ((pk(x))and (W')‘(X:) the solutions of (2.17) with
b4

‘P'}L(x) x(x
(cp';‘(())) : (1 . (w())
@,(0) 0

(2.18) Y, (x) =Y, (x;q) =

0
) respectively, and by
1

Oa(x)  walx)
P(x) Wh(x)

the fundamental matrix of equation (2.17). The following conservation law is basic and

has important consequences as we will later see. The Wronski determinant

(2.19) [f,, €] (x) = det ( '
f(x) g (x)

£y (x) gx(x))

of two solutions f;,g, of (2.17) is constant. This can easily be seen by differentiation of

the determinant. In particular one has
(2.20) det Y, (x) =[9y, V3]l x)=1, xe R.

Step 2. Floquet theory.

In order to find out for which Ae C equation (2.14) has wavelike solutions, one tries to
understand the stability behaviour of the dynamical system (2.17). To this end one takes
advantage of the periodicity of q and asks for solutions g, which, after turning one
period, only change by a (in general complex) factor, i.e. for solutions g, and factors

(X)) € C such that

(2.21) g, (x+L) = u(d) - g,(x), xeR.



