ARTIFICIAL
INTELLIGENCE

““COMPUTER
SCIENCE

Shotaro Akaho
Wah-Sui Almberg
Jordi Atserias
Magnus Boman
Mark Burgin
Mehdi Dastani
Andrzej Karbowski
A. Kolakowska
Ingo Kreuz
Viacheslav Novikov
M. A. Novotny
Dieter Roller
\ Leendert van der Torre {

SUS a1l S}lannon
PNOVA 3 Editor

ARTIFICIAL INTELLIGENCE
AND COMPUTER SCIENCE

SUSAN SHANNON
EDITOR

~ m*""f""‘\
y
/ Jo i I

,,"'7 ‘«.\ Lo i,}*
By \ ./ b uw
P) YA 4 Y2l
i LTV |
| J&o <%y
| amien., . 1 =

-4 ~ e f
Dg o - Y
(% a . q
3 T g
\ x 4 4

in

E2007000947

Nova Science Publishers, Inc.
New York

Copyright © 2005 by Nova Science Publishers, Inc.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical
photocopying, recording or otherwise without the written permission of the Publisher.

For permission to use material from this book please contact us:
Telephone 631-231-7269; Fax 631-231-8175
Web Site: http://www.novapublishers.com

NOTICE TO THE READER
The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or
implied warranty of any kind and assumes no responsibility for any errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of
information contained in this book. The Publisher shall not be liable for any special,
consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or
reliance upon, this material.

This publication is designed to provide accurate and authoritative information with regard to the
subject matter covered herein. It is sold with the clear understanding that the Publisher is not
engaged in rendering legal or any other professional services. If legal or any other expert
assistance 1s required, the services of a competent person should be sought. FROM A
DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE
AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

'

Artificial Intelligence and Computer Science / Susan Shannon, editor.
p. cm.
Includes index.
ISBN 1-59454-411-5 (hardcover) . i
1. Artificial Intelligence and Computer Science. Susan Shannon.
QC173.7.T74 2005
530.14'072--dc22 ' 2004024758

Published by Nova Science Publishers, Inc. ++ New York

ARTIFICIAL INTELLIGENCE
AND COMPUTER SCIENCE

PREFACE

We are living in a world where complexity of systems created and studied by people
grows beyond all imaginable limits. Computers, their software and their networks are among
the most complicated systems of our time. Science is the only efficient tool for dealing with
this overwhelming complexity. One of the methodologies developed in science is the
axiomatic approach. It proved to be very powerful in mathematics. In Chapter 1, we develop
further an axiomatic approach in computer science initiated by Floyd, Manna, Blum and other
researchers. In the traditional constructive setting, different classes of algorithms (programs,
processes or automata) are studied separately, with some indication of relations between these
classes. In such a way, the constructive approach gave birth to the theory of Turing machines,
theory of partial recursive functions, theory of finite automata, and other theories of
constructive models of algorithms. The axiomatic context allows one to research collections
of classes of algorithms, automata, and processes. These classes are united in a collection by
common properties in a form of axioms. As a result, axiomatic approach goes higher in the
hierarchy of computer and network models, reducing in such a way complexity of their study.
The suggested axiomatic methodology is applied to evaluation of possibilities of computers
and their networks. People more and more rely on computers and other information
processing systems. So, it is vital to know better than we know now what computers and
other information processing systems can do and what they can’t do. The main emphasis in
this paper is done on such properties as computability, decidability, and acceptability. These
properties are important for the further development of artificial intelligence.

Chapter 2 reviews current algorithms for distributed, asynchronous control of data
networks. Different problem formulations are considered: from the simplest shortestpath
approach, without Quality of Service (QoS) constraints, via total flow cost minimization for
given traffic quality equations, until dynamic flow control with influencing users through
transmission prices. These different formulations are presented in a unified way and
compared from the possible application area point of view.

In order to solve complex configuration tasks in technical domains, various knowledge
based methods have been developed. However, their applicability is often unsuccessful due to
their low efficiency. One of the reasons for this is that (parts of the) problems have to be
solved again and again. instead of being “learnt” from preceding processes. However,
learning processes bring with them the problem of conservatism, for in technical domains
innovation is a deciding factor. On the other hand, a certain amount of conservatism is often
desired since uncontrolled innovation as a rule is also detrimental.

viil Susan Shannon

Chapter 3 proposes the heuristic RKF (Relevant Knowledge First) for making decisions
in configuration processes, based on the so-called relevance of objects in a knowledge base.
The underlying relevance-function has two components, one based on reinforcement learning
and the other based on forgetting (fading). The relevance of an object increases with its
successful use and decreases with age, when it is not used. RKF has been developed to speed
up the configuration process and to improve the quality of the solutions in relation to the
user’s rating of the solutions.

An algorithm for managing a portfolio of stocks using a trading agent is presented in
Chapter 4. A simulation game inspired by history-based Parrondo games is described. A
performance measure is defined, with which various strategy mixes can be judged. Even
when transaction costs are taken into account, active portfolio management (as opposed to
Buy and Hold) is shown to be profitable.

In Chapter 5 the authors propose a novel criterion for support vector machine (SVM)
learning: maximizing the margin in the input space, not in the feature space like the original
SVM. This criterion is appropriate in particular when some prior knowledge is given by a
metric in the input space. We derive an algorithm that consists of two alternating steps to
estimate the dual sets of parameters, where those parameters are first initialized by the
original SVM. The first step is to update one set of parameters by a Newton-like procedure,
and the second step is to update the dual set by solving a quadratic programming (QP)
problem. The algorithm converges to a local optimum in a few steps under mild conditions,
and it preserves the sparsity of support vectors. Although the complexity for calculating
temporal variables becomes large, the complexity for the QP problem does not change. It is
also shown that the original SVM can be seen as a special case of this framework. We further
derive a simplified algorithm which enables us to use existing codes for the original SVM.

In a state-update protocol for a system of L asynchronous parallel processes that
communicate only with nearest neighbors, global desynchronization in operation times can be
deduced from kinetic roughening of the corresponding virtual-time horizon (VTH). The
utilization of the parallel processing environment can be deduced by analyzing the
microscopic structure of the VTH. In Chapter 6 we give an overview of how the methods of
non-equilibrium surface growth (physics of complex systems) can be applied to uncover some
properties of state update algorithms used in distributed parallel discrete-event simulations
(PDES). In particular, we focus on the asynchronous conservative PDES algorithm in a ring
communication topology. The time evolution of its VTH is simulated numerically as
asynchronous cellular automaton whose update rule corresponds to the update rule followed
by this algorithm. There are two cases of a balanced load considered: (1) the case of the
minimal load per processor, which is expected to produce the lowest utilization (the so-called
worst-case performance scenario); and, (2) the case of a general finite load per processor. In
both cases, we give theoretical estimates of the performance as a function of L and the load
per processor, i.e., approximate formulas for the utilization (thus, the mean speedup) and for
the desynchronization (thus, the mean memory request per processor). It is established that
the memory request per processor, required for state savings, does not grow without limit for
a finite number of processors and a finite load per processor but varies as the conservative
PDES evolve. For a given simulation size, there is a theoretical upper bound for the
desynchronization and a theoretical non-zero lower bound for the utilization. We show that
the conservative PDES are generally scalable in the ring communication topology. The new
approach to performance studies, outlined in this chapter, is particularly useful in the search

Preface 1X

for the design of a new-generation of algorithms that would efficiently carry out an
autonomous or tunable synchronization.

Chapter 7 éxplores a new robust approach for Semantic Parsing of unrestricted texts. Our
approach formalizes Semantic Parsing as a Consistent Labelling Problem (CLP), allowing the
integration of several knowledge types (syntactic and semantic) obtained from different
sources (linguistic and statistical). The current implementation obtains 95% accuracy in
model identification and 72% in case-role filling.

In Chapter 8 the description of the language model of data, offered by the author,
responding the purposes of storage and retrieval of complicatedly structured data and
initiation of control operations, according to recursive rules, having the same structure, as the
data, is given. In the model, as it is accepted, the structural, manipulation and integrity parts
are allocated, the features of implementation are considered. The possibilities of formulation
and realization of the tasks of teaching and semantic search of information on natural
language within the framework of the model are discussed also.

In Chapter 9 we investigate the relation between decisions, deliberation and agent types.
In particular, we are interested how deliberation leads to decisions, and how agent types
classify patterns of deliberation. We therefore consider Classical and Qualitative Decision
Theories (CDT and QDT), the Beliefs-Desire-Intention (BDI) model, 3APL systems, and
Belief-Obligation-Intention-Desire (BOID) systems. The first two are based on a decision rule
which expresses a notion of rationality, whereas the latter three are based on deliberation
processes and agent types.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Index

CONTENTS

Measuring Power of Algorithms, Programs and Automata
Mark Burgin

Distributed, Asynchronous Algorithms for Data Networks
Control - A State of the Art Review
Andrzej Karbowski

Reinforcement Learning and Forgetting for Knowledge Based
Configuration
Ingo Kreuz and Dieter Roller

An Active Agent Portfolio Management Algorithm
Wah-Sui Almberg and Magnus Boman

SVM That Maximizes the Margin in the Input Space
Shotaro Akaho

Desynchronization and Speedup in an Asynchronous
Conservative Parallel Update Protoco
A. Kolakowska and M. A. Novotny

A Robust Semantic Parsing Approach
Jordi Atserias :

Language Model of Data and Some Features of Its
Implementation
Viacheslav Novikov

Decisions, Deliberation, and Agent Types CDT - QDT - BDI -
3APL - BOID
Mehdi Dastani and Leendert van der Torre

63

87

127

139

155

181

201

217

235

In: Artificial Intelligence and Computer Science ISBN: 1-59454-411-5
Editor: Susan Shannon, pp. 1-61 © 2005 Nova Science Publishers, Inc.

Chapter 1

MEASURING POWER OF ALGORITHMS,
PROGRAMS AND AUTOMATA

Mark Burgin
Department of Mathematics, University of California, Los Angeles
405 Hilgard Ave., Los Angeles, CA 90095

Abstract

We are living in a world where complexity of systems created and studied by people
grows beyond all imaginable limits. Computers, their software and their networks are among
the most complicated systems of our time. Science is the only efficient tool for dealing with
this overwhelming complexity. One of the methodologies developed in science is the
axiomatic approach. It proved to be very powerful in mathematics. In this paper, we develop
further an axiomatic approach in computer science initiated by Floyd, Manna, Blum and other
researchers. In the traditional constructive setting, different classes of algorithms (programs,
processes or automata) are studied separately, with some indication of relations between these
classes. In such a way. the constructive approach gave birth to the theory of Turing machines.
theory of partial recursive functions, theory of finite automata, and other theories of
constructive models of algorithms. The axiomatic context allows one to research collections
of classes of algorithms, automata, and processes. These classes are united in a collection by
common properties in a form of axioms. As a result, axiomatic approach goes higher in the
hierarchy of computer and network models, reducing in such a way complexity of their study.
The suggested axiomatic methodology is applied to evaluation of possibilities of computers
and their networks. People more and more rely on computers and other information
processing systems. So, it is vital to know better than we know now what computers and other
information processing systems can do and what they can’t do. The main emphasis in this
paper is done on such properties as computability, decidability, and acceptability. These
properties are important for the further development of artificial intelligence.

Key words: computation, computing power, acceppting power, axiom, solvability,
computability, decidability, acceptability

2 Mark Burgin

1 Introduction

Mathematical methods play more and more important role in society. Mathematics is applied
to a diversity of other fields. Mathematics provides a variety of methods for description,
modeling, computation, reasoning, constructing, etc. This extensive variety of methods is
traditionally divided into two directions: constructive and axiomatic. Beginning from Euclid’s
“Elements,” which present geometry as an axiomatic discipline, axiomatic methods have
demonstrated their power in mathematics. As Burton (1997) writes, generation after
generation regarded the “Elements” as the summit and crown of logic and mathematics, and
its study as the best way of developing facility of exact reasoning. Abraham Lincoln at the
age of forty, while still a struggling lawyer, mastered the first six books of Euclid, solely as
training for his mind. Even now, in spite of the discovery of non-Euclidean geometries and
improvements of the system of Euclid, “Elements” largely remains the supreme model of a
book in mathematics, demonstrating the power of the axiomatic approach.

The main goal of this paper is to show that axiomatic methods are also very efficient for
computer science. When computers were created and utilized, the theory of algorithms
formed a core of computer science and till now this is the most developed mathematical
discipline of computer science. Methods and technique developed in this paper for the theory
of algorithms and computation are oriented at various applications in computer science and
technology. Examples of practical problems that benefit from this approach are debugging
and testing computer software, design of software metrics, and comparison of computational
power for different systems.

It is possible to consider three levels of axiomatization: local, global, and multiglobal.

Local or object oriented axiomatization gives axioms for a description/determination of a
single object, e.g., a separate program or algorithm. As an example, we can take the axiomatic
theory of programs originated in (Naur, 1966; Floyd, 1967) and developed further in (Hoare,
1969; Milner, 1978) and many other books and papers.

Global or class oriented axiomatization gives axioms for a description/determination of a
definite class of objects, e.g., Euclidean geometry, the class of all vector spaces, and the class
of all groups. Axiomatic definitions of programming languages give other examples of global
or class oriented axiomatization (Hoare and Wirth, 1973; Schwartz, 1978; Meyer and
Halpern, 1980).

Multiglobal ~ or feature oriented — axiomatization gives axioms for a
description/determination of a system of definite classes that have some specific features in
common, e.g., all set theories in which the Axiom of Choice is valid or all classes of finite
groups.

In the global approach, a system of axioms is taken (built or selected) for a description of
some system. Then these axioms are used for deduction of properties of this system. This is
the standard mathematical way of axiomatic studies. It is embodied in such classical works as
Euclid’s Elements, Hilbert’s axiomatization of the Euclidean geometry, and axiomatic set
theories (cf. Fraenkel and Bar-Hillel, 1958): ZF of Zermelo-Fraenkel, VN of von Neumann,
BG of Bernays-Godel, and two theories of Quine — NF and ML. The problem that is solved
by a global axiomatization is what are basic properties of a given system that allow one to
deduce all other properties.

Measuring Power of Algorithms, Programs and Automata 3

In contrast to this, the multiglobal approach is oriented not at a system of objects but at
definite properties of such systems. The aim of multiglobal axiomatization is to characterize
by simple properties P, , ... , P, such classes of systems in which some important results R; |
..., R, are valid. Properties P, , ..., P,, are formulated as axioms and conditions A, , ..., A,,

and the necessary results R, , ... , R, are deduced from these axioms and conditions as
theorems T, , ... , T, . Usually, the initial properties P, , ... , P,, in the form of axioms and
conditions Ay, ... , A,, are transparent and easy to test, while the deduced properties Ry , ...,

R, are complicated and hidden from direct comprehension.

This allows one not to prove the same result, for example, R; , for each class from a
diverse variety of classes separately, but to check for each of those classes only initial axioms,
which are much simpler, and then to deduce this result R; from a general theorem T; proved in
the axiomatic setting. Axiomatic form of concept introduction in modern mathematics, such
as rings, fields. Hilbert spaces. Banach spaces etc., gives classical examples of such a
technique. Another example of this approach is Blum’s (1967) concept of the size of a
machine, which synthesized many measures of algorithms and software metrics. Another his
concept is computational complexity, which in the axiomatic form synthesized such concepts
as time complexity and space complexity of computation (Blum, 1967a). The further
development of this approach resulted in axiomatic development of the theory of complexity
of algorithms and computation (Burgin, 1982; 1992) and its application to software measures
(Burgin and Debnath, 2003).

The first Godel’s incompleteness theorem (1931) shows that the problem of global
axiomatization cannot be completely solved for sufficiently rich mathematical systems.
Axioms cannot present all properties of such systems, given traditional means of inference.
Thus, it becomes more efficient to consider partial systems of axioms that define systems of
classes in the context of multiglobal axiomatization. According to the modern methodology
of science, such systems of axioms become laws of the second order (Burgin and Kuznetsov,
1994).

The reason why we need multiglobal axiomatization in computer science is existence of a
huge diversity of computer and network systems, programs and program systems, as well as
their theoretical models. Axiomatics allows one to compress information about all these
devices and systems, providing efficient means for their study and development.

An extreme case of the multiglobal axiomatization is reverse mathematics aimed at
finding minimal conditions for a possibility to prove some result or a system of results.
Multiglobal axiomatization is also closely related to reverse mathematics, which strives to
obtain the simplest conditions under which a given result (mathematical theorem) is valid.
Namely, reverse mathematics is the branch of mathematics concerned with what are the
minimal axioms needed to prove the particular theorem (Friedman and Hirst, 1990: Giusto
and Simpson, 2000). It turns out that over a weak base theory, many mathematical statements
are equivalent to the particular additional axiom needed to prove them.

Axiomatic approach brings the theory of algorithms to a new level. Historically, this
theory appeared when models of algorithms were constructed to prove absolute
undecidability of some mathematical problems. Such ultimate undecidability demanded to
show that there is no algorithm for problem solution. In other words, it was necessary to give
an exact description of all possible algorithms. The goal was achieved by constructing such
ultimate classes of recursive algorithms as Turing machines, partial recursive functions, and
many other models of algorithms. However, recent development of computer science

4 Mark Burgin

demonstrated that these classes are not absolute and there are more powerful algorithms (cf.,
for example, Burgin, 2001). Thus, we have come to the situation when it is impossible to
reduce decidability problems to one universal class of algorithms. Axiomatic setting allows
one to eliminate this obstacle and to prove undecidability without constructive models of
algorithms. Many other properties are also obtained from axioms and simple conditions.

In this paper, we consider the most conventional class of reactive algorithms and abstract
automata. These algorithms and automata react to a given input by producing some output or
coming to some state. Active, interactive, and proactive algorithms and automata are
considered elsewhere.

Our advent in a new realm of multiglobal axiomatics of algorithms, automata, and
programs, we begin (Section 2) with an analysis of such basic for computer science concepts
as algorithms, programs, and abstract automata. The suggested approach allows us to
eliminate some contradictions and inconsistencies in the conceptual system of computer
science.

In Section 3, types of algorithms and functioning of automata and algorithms are
analyzed and formalized. A multifaceted typology is developed for algorithms aimed at
axiomatizing computer science.

In Section 4, basic axioms for algorithms are considered in three forms: postulates as the
most basic assumptions, axioms as global assumptions that represent important properties,
and conditions as local assumptions that represent specific properties.

An example of computer science postulates is the Deterministic Computation Postulate
PDC, which states that any algorithm A that takes inputs from a set X and gives outputs that
belong to a set Y determines a function f; from X into Y.

An example of computer science axioms is the Universality Axiom AU, which states that
for a class K of automata/algorithms and some coding ¢ : K — V', there is a universal
algorithm/automaton in K.

An example of computer science conditions is the Switching Condition SW, which states
that for any x and y from X, there is a switching for x and y algorithm/automaton in a class K.

In Section 5, power of algorithms and automata is investigated. Exact mathematical
methods are developed for comparison and evaluation of algorithms and automata.

In Section 6, properties and related problems of algorithms and automata are classified
and studied. All properties and problems are separated into several classes: linguistic,
functional, description, operational, etc. Some of these classes have been intensively studied
for different models of algorithms, such as finite automata, Turing machines, and some
others. Here these properties and problems are considered in axiomatic setting, allowing one
to essentially expand the scope of applications. Other studied here properties and problems
have been beyond the scope of conventional computer science although they are important for
practice.

In Section 7, boundaries for algorithms and computation are found. In particular, it is
proved that all non-trivial linguistic (Theorem 7.5) and functional (Theorem 7.6) properties
are undecidable for a lot of classes of algorithms. This implies classical results of Rice (1951)
for Turing machines and some results from (Adleman and Blum, 1991) for inductive
inference. At the same time, for other kinds of properties (e.g., operational properties), there
are both decidable and undecidable non-trivial properties.

Applications of the theoretical results to software and hardware verification and testing
are considered in Section 8.

Measuring Power of Algorithms, Programs and Automata 5

Denotations and Basic Definitions:

N is the set of all natural numbers;

 is the sequence of all natural numbers;

& is the empty set;

The logical symbol ¥V means “for any™;

The logical symbol 3 means “there exists™;

If P is a property, then =P is the complementary property, i.e., an object x has the property
P if and only if it does not have the property —P.

R is the set of all real numbers;

A binary relation T between sets X and Y is a subset of the direct product XxY. The set X
is called the domain of T (X = D(T)) and Y is called the codomain of T (Y = CD(T)). The
range of the relation 7'is R(7) = { y ; 3x € X ((x, y) € 1) }. The definability domain of the
relation Tis DD(1) ={ x;3ye Y((x,y) e 1) }.

A function or total function from X to Y is a binary relation between sets X and Y in which
there are no elements from X which are corresponded to more than one element from Y and to
any element from X is corresponded some element from Y. Often total functions are also
called everywhere defined functions.

A partial function f from X to Y is a binary relation in which there are no elements from X
which are corresponded to more than one element from Y.

For a partial function f, its definability domain DD(f) is the set of all elements for which f
is defined.

A function fg is called empty or nowhere defined if DD(f) = @.

For any set, S, xs(x) is its characteristic function, that is, %s(x) is equal to 1 when x € §
and is equal to 0 when x ¢ §, and Cg(x) is its partial characteristic function, that is, Cs(x) 18
equal to 1 when x € § and is undefined when x ¢ S.

An alphabet or vocabulary A of a formal language is a set consisting of some symbols or
letters. A vocabulary is an alphabet on a higher level of hierarchy because words of a
vocabulary play the same role for building sentences as symbols in an alphabet for building
words. Traditionally any alphabet is a set. However, a more consistent point of view is that an
alphabet is a multiset (Knuth, 1981), containing an unbounded number of identical copies of
each symbol.

A string or word is a sequence of elements from the alphabet. A* denotes the set of all
finite words in the alphabet A. Usually there is no difference between strings and words.
However, having a language, we speak about words of this language and not about its strings.
A** denotes the set of all (finite and infinite) words in the alphabet A. A* denotes the set of all
non-empty finite words in the alphabet A. A™" denotes the set of all non-empty (finite and
infinite) words in the alphabet A.

A formal language L is any subset of A*.

The length I(w) of a word w is the number of letters in the word w.

€ is the empty word.

A is the empty symbol.

When an algorithm/automaton A gives y as the result being applied to x, it is denoted by
A(x) = y. When an algorithm/automaton A gives no result being applied to x, it is denoted by
A(x) = «.

6 Mark Burgin

D(A) is the domain of an algorithm A, i.e., the set X of such elements that are processed
by A.

DD(A) is the definability domain of an algorithm A, i.e., is the set X of such elements that
if any of them is given as input to A, then A gives a result/output.

C(A) is the codomain of an algorithm A, i.e., the set Y of such elements that are tentative
outputs of A.

2 Algorithms, Programs, Procedures, and Abstract Automata

We begin with clarification of relations between such basic concepts of computer science as
algorithms, programs, and automata.

In many cases, these terms are used interchangeably. However, computing practice and
research experience show that these concepts are different. For instance, programmers and
computer scientists are aware that the same algorithm can be expressed in a variety of forms.
Texts are conventional forms of algorithm representation. For many algorithms, a
representing text can be practically in any language, from natural languages like English or
Spanish to programming languages like C™ or Java. That is why, as it is stressed by Shore in
(Buss er al, 2001), it is important to know that algorithm is different from its representation
and to make a distinction between algorithms and their representations. In a similar way,
Cleland (2001) emphasizes that “it is important to distinguish instruction-expressions from
instructions.” Instructions are the simplest algorithms. The same instruction may be expressed
in many different ways, including in different languages and in different terminology in the
same language. Also, some instruction may be communicated non-verbally, e.g., when one
computer sends a program to another computer in a form of electrical signals.

However, advanced languages provide more means for algorithm representation. As a
result, not all algorithms that can be described in English have a representation Zulu. It would
be an interesting problem to compare natural languages by those means that they provide for
algorithm representation. The same is true for mathematical models of algorithms. As we
know Turing machines allow one to represent much more algorithms than finite automata.
For instance, addition of arbitrary binary numbers can be represented in many models: by a
Turing machine, by a formal grammar, by a neural network, or by a finite automaton. At the
same time, it is possible to realize multiplication of arbitrary binary numbers by a Turing
machine, neural network or formal grammar. No finite automaton can multiply arbitrary
binary numbers.

In addition, an algorithm can be represented not only in a symbolic form but also by
hardware. For instance, in computer memory, programs and consequently, algorithms, are
represented by states of memory cells. Another type of algorithm representation by hardware
gives digital arithmetic. Digital arithmetic encompasses study of symbolic number
representations, algorithms for operations on numbers, implementations of arithmetic units in
hardware, and their use in general-purpose and application-specific systems (Ercegovac, M.D.
and Lang, 2002; Wakerly, 2001). Numerical algorithms are represented by (embodied in)
integrated circuits of arithmetical units (processors) of computers.

Moreover, neural networks realize dynamic storage of information, utilizing a part of the
network. To preserve its state, a neuron can be initiated to go into a self-sustaining loop that
keeps the neuron firing even when the top input is no longer active. The stored binary bit is

Measuring Power of Algorithms, Programs and Automata 7

continuously accessible by looking at the output. This configuration is called a latch. The part
of a network that used only for dynamical storage plays the role of the short-term memory of
people or primary memory of computers: random access memory (RAM) and read only
memory (ROM). Experimental evidence shows existence of such a dynamic memory in the
brain (Suppes and Han, 2000). When we store a program in this dynamic memory, we have a
representation of an algorithm by a process.

Consequently, we come to two forms of algorithm representation: iconic, symbolic, and
physical.

Definition 2.1. An algorithm representation by means of structures is called iconic.

A neural network or a cellular automaton in graphical form is an example of an iconic
algorithm representation.

Definition 2.2. An algorithm representation by means of symbols is called symbolic or an
algorithm description.

A program printed on paper is an example of a symbolic algorithm representation.

Definition 2.3. An algorithm representation by means of a physical entity (hardware) is
called physical.

A program stored in computer memory is an example of a system algorithm
representation.

In turn, physical algorithm representation can be subdivided into three classes: system,
state, and process physical algorithm representation.

Chips of arithmetic units form system algorithm representation. A program written in a
CD is a state algorithm representation. Specific processes in the brain form process algorithm
representation.

It is also possible to divide physical representations by types of systems and processes. It
gives us mechanical, electronic, and quantum representations of algorithms. Here it is
necessary to remark that in the case of information, it is more correct to write about quantum
representation of information and not about quantum information.

There are three main classes of symbolic representations for algorithms and procedures:

Automaton representations. Turing machines and finite automata give the most known
examples of such representations.

Instruction representations. Formal grammars, rules for inference, and Post productions
give the most known examples of such representations.

Equation representations. Here an example of such recursive equation is given.

1 when n=1,
Fact (n) =
n-Fact(n-1) when n>1

The fixed point of this recursive equation defines a program for computation of the
factorial n!

We frequently encounter similar situations of multiple representations in nature and
society. For instance, it emerges in the case of numbers. For instance, the same rational
number may be represented by the following fractions 1/5 , 2/10 or 3/15, as well as by
decimals 0.2, 0.20 or 0.19999... Number seven is represented by the Arab (or more exactly,

8 Mark Burgin

Hindu) numeral 7 in the decimal system, the sequence 111 in the binary number system, and
by three symbols VII in the Roman number system.

There are, at least, three natural ways for separation of algorithms from their descriptions
such as programs or systems of instructions.

The model approach:

Some type D of algorithm representations (for example, Turing machines) is taken as a
model description, in which there is a one-to-one correspondence between algorithms and
their representations. Then we introduce an equivalence relation R between different
representations of algorithms. This relation has to satisfy two axioms:

(DAT) Any representation of an algorithm is equivalent to some element from the model
class D.

(DA2) Any two elements from the model class D belong to different equivalence classes.

Such an approach is applied by Moschovakis, who considers the problem of unique
representation for algorithms in his paper “What is an Algorithm?’ (2001). He demonstrates
that machine models of algorithms, such as Turing machines, are only models but not
algorithms themselves. The main argument is that there are many models for one and the
same algorithm. To remedy this, he defines algorithms as systems of mappings, building
insuch a way a new model for algorithm, which is defined by recursive equations and called
recursor. This is a progress in understanding and mathematical modeling algorithms.
However, this does not solve the problem of separating algorithms as something invariant
from their representations. This type of representation is on higher level of abstraction than
traditional representations, such as Turing machines or partial recursive functions.
Nevertheless, a recursor (in the sense of Moschovakis) is only a new model for algorithm but
not algorithm itself.

The relational approach:

An equivalence relation R between different descriptions of algorithms is chosen. With
this relation, we define algorithm as a class of equivalent descriptions. Equivalence of
descriptions can be determined by some natural axioms, describing, for example, properties
of operations:

Composition Axiom. Composition (sequential, parallel, etc.) of descriptions represents
the corresponding composition of algorithms.

Decomposition Axiom. If a description H represents a sequential composition of
algorithms A and B, a description K represents a sequential composition of algorithms C
and B, and A = C, then H is equivalent to K.

At the same time, the equivalence relation R between descriptions can be formed on the
base of computational processes. Namely, two descriptions define the same algorithm 1f these
descriptions generate the same sets of computational processes. This definition depends on
our understanding of equal processes. For example, in some cases it is natural to consider
processes on different computing devices as different, while in other cases it might be better
to treat some processes on different computing devices as equal.

An example of such a relation R is obtained by modification of the rule suggested by
Cleland (2001) for instructions:

Measuring Power of Algorithms, Programs and Automata 9

Different algorithm descriptions, i.e., representations of algorithms, express the same
algorithm only if they prescribe the same type of functioning.

Such a definition of algorithm is not unique and depends on organization of
computational processes. For example, let us consider some Turing machine T and another
Turing machine Q. The only difference between T and Q is that Q contains all instruction of
T and one more instruction that is never used in computations of the machine Q. Then, on
one hand, it is possible to assume that this additional instruction has no influence on
computational processes and thus, T and Q algorithm one and the same algorithm. On the
other hand, if a Turing machine in a course of computation always go through all instructions
to choose the one to be performed, then the processes are different and consequently, T and Q
represent different algorithms.

The structural approach:

In it, a specific invariant (structure) is extracted from different representations. This
structure is called an algorithm. Here we understand structures in the sense of (Burgin, 1997).
It results in the following understanding, which separates algorithm from its descriptions.

Definition 2.4. An algorithm is a (finite) structure with exact effective information
(instructions) for some performer (class of performers) that allows this performer(s) to
perform operations (actions) in order to achieve a definite goal.

This shows that algorithms are compressed constructive, i.e., giving enough information
for realization, representations of processes. In particular, they represent intrinsic structures of
computer programs. Hence, algorithm is an essence that is independent of how it happens to
be represented and is similar to mathematical objects. Once the concept of algorithm is so
rendered, its broader connotations virtually spell themselves out. As a result, algorithm
appears as consisting of three components: structure, representation (linguistic, mechanical,
electronic etc.), and interpretation.

It is important to understand that not all systems of rules represent algorithms. For
example, you want to give a book to your friend Johns, who often comes to your office. So,
you decide to take the book to your office (the first rule) and to give it to Johns when he
comes to your office (the second rule). While these simple rules are fine for you, they are
much too ambiguous for a computer. In order for a system of rules to be applicable to a
computer, it must have certain characteristics. We specify these characteristics later in formal
definitions of an algorithm. Now we only state that formalized functioning of complex
systems (such as people) is mostly described and controlled by more general systems of rules
than algorithmic structures. They are called procedures.

Definition 2.5. A procedure is a compressed operational representation of a process in
the form of a structure.

For instance, you have a set of instructions for planting a garden where the first step
instructed you to remove all large stones from the soil. This instruction may not be effective if
there is a ten-ton rock buried just below ground level. So, this is not an algorithm, but only a
procedure. However, if you have means to destroy this rock, this system of rules becomes an
algorithm.

Definition 2.5 describes procedure in the theoretical sense because there is also a notion
of procedure in the sense of programming. Namely, a procedure in a program, or subroutine,
is a specifically organized sequence of instructions for performing a separate task. This allows
the subroutine code to be called from multiple places of the program, even from within itself,

