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Foreword

Computer hardware technologies will be limited by the speed of electron motion, although the
performances of microprocessors have been continuously improved as the development of
microelectronics and computer architecture technology for the last 30 years. We expect that
future improvements are not so much in the speed of computer devices as in the complexity of
computation, which is determined by algorithms of computation. So further improvements in
algorithms will offer a possible route to continue to make computers faster. Therefore better
exploitation of parallel operations, pre-computation of parts of a problem and heuristic
technologies are viable ways of increasing computing efficiency.

The study of algorithms is an essential part of computer science. Significant advances in
this field have been made. Meanwhile, the applied realm of algorithms is being enlarged
continuously. A large group of recognized algorithms have become essential parts of modern
software systems.

As an outstanding and sigunificant work in this book, the solutions to over 360 exercises
will help the readers understand the main principles and concepts of algorithms design courses.
This book is especially valuable for the readers who are beginning to learn algorithm or wishing
to have up-to-date reference material at hand.

The research and design of algorithms is a field that is full of challenge and excitement. I
hope that this book could bring more researchers, students and engineers envolving in both
computer hardware and software to the competition in this field.

Member of the Chinese Academy of Sciences

Ahom XqBanﬁr

May 2004



Preface

This book provides solutions to many problems encountered in the modern study of computer
algorithms. It helps us better understand the course design and analysis of algorithms. The first
section in each chapter provides some relative algorithms, which are described in pseudo-code
designed to be readable by anyone who has done some programming. And the last section in
each chapter provides answers to the exercises. This book includes over 360 exercises, some
exercises test basic concept mastery of the chapter and others are about more complicated
problems. The exercises involve not only in classical problems, but also the interesting and
hotspot problems in some important applications. From typesetting a paragraph in word
processing to data compression, from database systems to the Internet search engines, all have
become essential parts of modern software systems.

The exercises in this book relate to the problems on elementary data structures, dynamic
sets and searching, B-trees, binomial heaps, Fibonacci heaps, data structures for disjoint sets,
divide and conquer, dynamic programming, greedy, amortized analysis, DFS, BFS, topological
sort, strongly connected components, minimum spanning tree, single-source shortest paths,
all-pairs shortest paths, maximum flow, etc.

The study of algorithms is at the very heart of computer science. During the last 50 years, a
certain amount of significant advances in the field of algorithms have been made. This book
aims to serve as a supplement for students and professionals interested in knowing and making
intelligent use of some fundamental algorithms to a broad variety of applications. This book can
be used as complementary material for graduate and undergraduate courses in the design and
analysis of algorithms. It will also provide useful background and reference information for
those who are working with ACM programming contest.

If any reader finds errors or omissions in this book, piease inform the author (preferably by
electronic mail). All constructive criticism and suggestions for answers to more exercises are
most welcome.

Acknowledgements. Many people provided me helpful references and materials. Also, some
students of the spring graduate and fall undergraduate courses on design and analysis of
algorithms (http://www.lib.xidian.edu.cn/newindex/huchongwei/kejian. htm) at Xidian University
provided me with helpful suggestions. I have gained two mentors’ support in writing this book,
and particularly want to express my appreciation to them. They are Academician Shen Xubang,
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Chinese Academy of Science and Professor Han Jungang, Dean of the Department of Computer
Science and Technology, Xi’an University of Posts and Telecommunications. It has been a
pleasure working with Higher Education Press in the development of this book. I especially
thank Liu Jianyuan, Ni Wenhui, and Guo Fusheng for their support and patience. Finally, 1
thank my husband and my son for their love and support during the writing of this book.

Huo Hongwei

School of Computer Science
Xidian University

May 2004
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Chapter 1

Mathematical Foundation

An algorithm is any well-defined computational procedure that takes some values as input and
produces some values as output. To characterize an algorithm’s efficiency, we introduce
asymptotic notation to describe the asymptotic running time of an algorithm. The notation is a
function of the input size of one’s problem. We are concerned with how the running time of an
algorithm increases with the size of the input, as the size of the input increases without bound.
We will study methods for developing efficient algorithms and make mathematical comparison
of algorithms (without actually implementing them).

The algorithms we discuss will be in “pseudo-code”, so we will not worry about certain
details of implementation.

1.1 Growth of Functions

1.1.1 O-notation (Big-0)

O(g(n)) = {fin) : Ac, np > 0 such that n) < cg(n) V n 2 ny).
We use O-notation to give an upper bound on a function and bound the worst-case running
time.

Examples:

1 2 2 2 2
1. gn“ — 3n € O(n) because %n“ -3n<cenifc2

3 | w

l which holds for ¢ = l

3 3
andn>1.

2. k1n2 +kn+ ke O(nz) because kln2 + kon + k3 < (ki + kol + 1k )n2 and forc >k, +
kol + ksl and n > 1, k\n* + kon + k3 S e

3. km2 +kn+ ks e O(n3) as k1n2 + kan + ks < (k) + kol + ksl )n3. (upper bound)

Note:

® When we say “the running time is O(nz)” we mean that the worst-case running time is
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O(n”) — the best case might be better.
® Use of O-notation often makes it much easier to analyze algorithms; we can easily
prove the O(nz) insertion-sort time bound.
® We Sometime abuse the notation, for instance:
B Write fin) = O(g(n)) instead of fin) € O(g(n)).
® Use O(n) in equations: e.g. 2’ +3n+ 1 =2+ O(n) (meaning that 2 +3n+ 1=
2n* + Jf{n) where fin) is some function in O(n)).
B Use O(1) to denote a constant time.

cg(n)

fin)

no

fln) = O(g(n))

1.1.2 Q-notation (Big-Omega)

Q(g(n)) = {fAn) : Ic, ny > 0 such that cg(n) <fn) V n 2 ny}
We use Q-notation to give a lower bound on a function.

Examples:

L2 3, Q(n’) because %nz —3n 3= cn’ if ¢ € 1/3 — 3/n which is true if ¢ = 1/6 and

n>18.
2. k|n2 +kan+ k3= Q(nz).
3. kn’+kn+ ks=Q(n). (lower bound)

Note:
® When saying “the running time is Q(n’)” we mean that the best-case running time is
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Q(nz)—the worst case might be worse.
® Insertion-sort:

M Best-case: £(n)—when the input array is already sorted.
B Worst-case: O(nz)—when the input array is reverse sorted.
B We can also say that the worst case running time is Q(nz).

fin)

cg(n)

M

ny  fn)=Qgn)

1.1.3 ©-notation (Big-Theta)

O(g(n)) = {fin) : Ic1, c2, np > 0 such that ¢, g(n) £ fin) < c2g(n) ¥V n = ng}
We use O-notation to give a tight bound on a function.

fin) = O(g(n)) if and only if An) = O(g(n)) and fAn) = Q(g(n)).
Examples:

1. k,n2 +kn+ k3= (—)(nz).
2. The worst-case running time of insertion-sort is o).

3. 6nlgn+ Jnlg’n=0(nlgn).
We need to find ¢|, ¢2, np >0 such thatcinlgn < 6nlgn + \/; Igzn < cmnlgnforn 2 ny.

2 Lo .
clnlgnS6nlgn+\/Zlgn=>c|S6+lgn/\/;,whjchlstruelfwechoosec,=6andn0=l.

6nlgn+ \/;lgzn Scn=>6+1gn /+/n < c», which is true if we choose ¢, = 7 and np =2. This is
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because 1g n <Jnifn22. So ¢ =6, ca=7 and ny = 2 works.
c28(n)

)

c1g(n)

ny  fin)=6(g(n))

1.2 Recurrences

To solve a problem P, divide and conquer paradigm involves three steps:
1. Divide P into smaller sub problems P;, P>, ..., P;.
2. Conquer by solving the smaller subproblems recursively.
3. Combine solutions to P, P, ..., P; into the solution for original P.

The analysis of divide-and-conquer algorithms leads to recurrences. Mergesort has the
recurrence T(n) = 2T(n/2) + n. There are four methods for solving recurrence—that is,
substitution method, iteration method, recursion-tree method and master method.

1.2.1 Substitution Method

The substitution method for solving recurrences consists of two steps. First, guess the form of
solution. Then use mathematical induction to find the constants and show that the solution works.

Example: Solve T(n) = 27(n/2) + n using substitution method.

Proof: We guess T(n) < cn Ig n for some constant ¢ (that is, 7(n) = O(n 1g n)).

Base case: Function constant for small constant n.

Inductive step: Assume that it holds for n/2: T(n/2) < cn/2 1g n/2. We try to show that holds

T(n) < cn lg n for an appropriate choice of the constant ¢. Substituting our guess in the
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recurrence, we have
Tn)=2T(n/2) + n
<2cenf21gnf2) +n
=cnlgn2+n
=cnlgn-cnlg2+n
=cnlgn—-cn+n
where the last step holds as long as ¢ > 1.

The hard part of the substitution method is often requires to make a good guess.

1.2.2 Iteration Method

In the iteration method we iteratively expand the recurrence until we “see the pattern”. The

iteration method does not require to make a good guess like the substitution method (but it is
often more involved than using induction).

Example: Solve T(n) = 8T(n/2) + n° (T(1) =1)
T(n) = n” + 8T(n/2)
=n" + 8(8T(n/27) + (n/2)")
=n’ + 8T(n/2”) + 8(n'/4)
=0 +2n + 82T(n/22)
=n" + 21" + 8°(8T(n/2Y) + (n/2HD)
=n’+2n° + 83T(n/23) + 82(112/42))
=n"+2n° + 270" + 8 T2

= +2n + 2+ 2+ 2 4
How long does it continue? i times where n2'=1=i=lgn
What is the last term? 87(1) = 8 "
Tny=n"+2n + 220" + %0 + 2% + .+ 2" 4 g1
= 2h=0.ig ) 20’ + 8"
=1 Ticoggn 1 20+ 2"
Now Zx0.1 0 -1 2" is a geometric sum so we have k=01 n 1 2 = 92%" "y = Om).
@HE" = 2% =
T(n) = n - On) + n
= O(n")
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1.2.3 Recursion-tree Method

In the recursion-tree method, each node in the tree represents the cost of a single
subproblem somewhere in the set of recursive function invocation. We sum the costs within
each level of the tree to obtain a set of per-level costs, and then we sum all the per-level costs to

determine the total cost of all levels of the recursion.

Example: Solve T(n) = 8T(n/2) + n*  (T(1) = 1)

@
T(n) %?2 §FS§

T(n/2) T(n/2)

T(n/4) T(n/4)

|81

8(n/2)* = 2n°

8% (n/4)? = 2°n*

o0 e
T(HYT(1) (1) 8" (1)

T(n) =n® +2n + 2202 + 2% + 2907 4 . 4 2187 2 glen
= 2k=0.lg n-1 2’ + 8
=n’ Lk=0.1g a1 24 2"
=n’. O(n) + n’
= G)(n3)
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1.2.4 Master Method

We have solved several recurrences using substitution, iteration and recursion-tree. in the
form of T(n) = aT(n/b) + n". (T(1)=1).
The solution to the recurrence T(n) = 2T(n/2) + nis O(nlgn) (a=2,b=2,and c=1).
The solution to the recurrence T(n) = 8T(n/2) + n’is G)(n3) (a=8,b=2,and c=2).
It would be nice to have a general solution to the recurrence T(n) = aT(n/b) + n. Yes, we do.
T(n)=aT(n/b) +n° a=1,b21,c>0.

O(n" ) if a>b°,
T(n)=< 0O(n‘log,n) ifa=>b,
") if a<b”.

1.2.5 Other Recurrences

Some important/typical bounds on recurrences have not been covered by the master
method:
® Logarithmic: Qg n)
Recurrence: T(n) =1 + T(n/2)
Typical example: recurse on a half input (and throw half away)
Variations: T(n) =1 + T(99n/100)
® Linear: ©(n)
Recurrence: T(n) =1 + T(n- 1)
Typical example: single loop
Variations: T(n) =1 + 2T(n/2), T(n) = n + T(n/2), T(n) = T(n/5) + T(In/10 + 6) + n
®  Quadratic: G)(nz)
Recurrence: T(n) = n +T(n - 1)
Typical example: nested loops
® Exponential: ©(2")
Recurrence: T(n) =2T(n - 1)

1.3 Exercises & Solutions

Exercise 1-1: Give two functions f; and f> so that the following equation is true for fi, and
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false for f5.
Zi =l.n ﬂl)= @(ﬂl’l))

Prove your answers.
Solution: Y, , 2 =2""'—2=02"). 3.1 i=nn+ 1)2 = O # On).

Exercise 1-2: Prove that
Ig (n!) = On lg n).
without appealing to Stirling’s approximation of the factorial function.

Solution: Since lg(n!) =3, ,1gi< Y1 . 1gn=nlgn, itis immediate that lg(n!) =
O(n 1g n). It remains to be shown that Ig (n!) = Q ( n 1g n). We assume that the base of log is 2,
and show that Ig(n!) 2 n (Ig n)/4 for all evens n 2 4. For even n, we have Ig(n") = X, , lgi =
D=2 18 12 Dicunn 1g n/2 2 n/2 (Ig n/2) = (n 1g n)/2 — n/2. For n = 4, we have (n Ig n)/2 — n/2
2 (nlg n)/4.

Exercise 1-3: Consider the following problem: given an array A[1..n] of distinct integers,
and a number | <k < n, find any one of the & largest elements in A. For example, if k£ = 2, it is
ok to return the largest or second largest integer in A, without knowing if the return value is the
largest or if it is the second largest array element.

(a) Give an algorithm that solves this problem using no more that n — k comparisons of array

elements.

(b) Argue that every algorithm that solves this problem must, in the worst case, perform at
least n—k comparisons.

Solution:
(a) Find-one of the k largest
FIND-ONE-K-LARGEST( )

1 x—oA[l]

2 fori=2ton—k+1

3 doif A[i] > x

4 then x — Al[i]

5 return x

(b) Suppose an algorithm performs only n—k -1 comparisons. Then at the end, there are at least



