APPLIED RELIABILITY

Paul A. Tobias, Ph.D.

David C. Trindade, Ph.D.



APPLIED RELIABILITY

Paul A. Tobias, Ph.D.

Senior Technical Staff Member
and Manager of Field Performance
and Statistical Support
IBM Corporation
Hopewell Junction, New York

David C. Trindade, Ph.D.

Corporate Director of Reliability
Advanced Micro Devices, Inc.
Sunnyvale, California

@‘ YAN NOSTRAND REINHOLD 'COMPANY
' - New York




Copyright © 1986 by Van Nostrand Reinhold Company Inc.

Library of Congress Catalog Card Number: 85-20220
ISBN: 0-442-28310-5

All rights reserved. No part of this work covered by the copyright hereon may
be reproduced or used in any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company Inc.
115 Fifth Avenue
New York, New York 10003

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 Latrobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada

Division of Gage Publishing Limited
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

1514131211 1098765432

Library of Congress Cataloging-in-Publication Data

Tobias, Paul A.
Applied reliability.

Includes index.
“ 1. Reliability (Engineering) 2. Quality control—
Statistical methods. 1. Trindade, David. 11. Title.
TA169.T63 1986 620’.00452 85-20220
ISBN 0-442-28310-5



':oa =

Preface

The purpose of this book is to provide the working engineer, statistician,
or scientist with practical tools and techniques for solving today’s applied
problems in reliability.

Quality and reliability have become strategic variables on a par with price
and performance. The average consumer consults tables that compare repair
records before selecting an automobile; corporations demand ever more strin-
gent guarantees of defect-free operation when purchasing data-processing
equipment. Those businesses that emphasize quality and reliability as part
of their normal manufacturing procedures are the ones that will be able to
compete in today’s marketplace; those that regard quality assurance as a
set of final inspection screens and reliability as a warranty pricing concern
will find themselves dwindling away.

The importance of quality and reliability is no longer ‘“‘new news” or contro-
versial. Numerous excellent books have described how to make quality a
way of life. Statistical consultants offer many courses on the mathematics
and .nanagement aspects of quality, and several large corporations have estab-
lished their own internal quality schools or institutes. The tools and techniques
of quality control are well known and widely practiced.

The analysis and control of product reliability is not as well understood.
Requiring systems to work, not only the first time, but for many hours or
months or years thereafter, makes the testing and product assurance role
much more difficult. There are only a few books and courses available to
teach an engineer how to run the experiments and make the decisions that
are required by management. Most textbooks on reliability are theoretical
in nature on the one hand or comprehensive reference works on the other,
neither of which fully serves the needs of the reliability engineer-or statistician
who has to answer reliability concerns on a daily basis.

This text is aimed primarily at those individuals who have responsibility
for the design or evaluation of the reliability aspects of components or hard-
ware systems. Statisticians desiring an introduction to the definitions, distribu-
tions, techniques, and models currently used to evaluate reliability will also
benefit.
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Much of this book evolved from lecture notes written by the authors for
the purpose of teaching reliability and quality concepts to managers and
engineers within an intensive one-week course at various IBM facilities
throughout the world. The notes were compiled because no available text
adequately covered all the techniques and procedures actually in use to evalu-
ate advanced technology reliability. The selection of material was dictated
by what was needed; the style of presentation was dictated by what worked.

The material varies considerably in scope and level of difficulty. Chapter
1 covers elementary descriptive statistics, whereas Chapter 8 includes models
for general reliability algorithms and burn-in benefits. Chapter 6 describes
how to fit a line through points, whereas Chapters 4 and 5 tell the reader
why it might be beneficial to buy state-of-the-art programs for maximum
likelihood estimation. Chapter 9 contains the theory of acceptance sampling
plans, as well as a wide collection of charts and nomographs for choosing
sampling plans and acceptance numbers. Most books on reliability do not
include the quality-control procedures described in Chapter 9, but since these
are often used to control reliability, they deserve a detailed description.

The reliability analyst needs to combine standard statistical methods with
advanced state-of-the-art techniques, on a day-to-day basis. To do so requires
being familiar with a collection of quick graphical methods and knowing
their strengths and weaknesses. When extremely important decisions based
on reliability data analysis must be made, the analyst should know what
advanced computer programs are available for purchase. An understanding
of life distributions and acceleration models and a collection of proven statisti-
cal data analysis tools are essential.

The best way to meet these needs is to 1llustrate the definitions, theories,
and models with applied numerical problems that make use of actual or
simulated data. There are sixty formal examples of this type throughout
the text, as well as many informal ones. These examples illustrate many of
the typical problems a reliability analyst must handle. Students are encouraged
to work out as many of them on their own as possible and then check out
their work with the solutions in the text. That way they can be sure of un-
derstanding the methods well enough to apply them to real data. Over ninety
graphs, charts, and tables are also included to supplement the other material.

Mathematical reliability theory, especially in the areas of data analysis
and modeling stress acceleration, is a rapidly evolving discipline. As time
goes on, new methods will replace some of those described in this book.
As of now, however, we present them as a collection of well-tested techniques
that have proven successful in evaluating and predicting reliability.

PAUL A. ToBIAS
DaviD C. TRINDADE



.

©

oy

Come

Contents

Preface/v

1. BASIC DESCRIPTIVE STATISTICS/1 '

Populations and Samples/1

Histograms and Frequency Functions/3
Cumulative Frequency Function/6

The Cumulative Distribution Function and The Probability Density
Function/6

Probability Concepts/10

Random Variables/13

Sample Estimates of Population Parameters/14
How to Use Descriptive Statistics/18

Data Simulation/19

Summary/20

2. RELIABILITY CONCEPTS/21

The Reliability Function/21
Some Important Probabilities/23 )
The Hazard Function or Failure Rate/24
The Cumulative Hazard Function/25
The Average Failure Rate/26
Units/27
Bathtub Curve for Failure Rates/28
Renewal Rates/29
Types of Data/31
Exact Times Censored Type 1/31
Exact Times Censored Type I1/31
Readout Time Data/32
Multicensored Data/33

vil



vili CONTENTS

Failure Mode Separation/34
Summary/34

3, THE EXPONENTIAL DISTRIBUTION/36

Exponential Distribution Basics/36
The Mean Time to Fail/40
Lack of Memory Property/43
rAreas of Application/44
Estimation of A/45
Exponential Distribution Closure Property/47
Testing Goodness of Fit/48
Confidence Bounds for A and the MTTF/51
The Case of Zero Failures/55
Planning Experiments Using the Exponential Distribution/57
Summary/61

4. THE WEIBULL DISTRIBUTION/63

Empirical Derivation of the Weibull Distribution/63
Properties of the Weibull Distribution/66

Extreme Value Distribution Relationship/70

Areas of Application/72

Weibull Parameter Estimation/74

Summary/80

5. THE NORMAL AND LOGNORMAL DISTRIBUTIONS/82

Normal Distribution Basics/82

Applications of the Normal Distribution/88

The Central Limit Theorem/89

Normal Distribution Parameter Estimation/90
The Lognormal Life Distribution/92

Properties of the Lognormal Distribution/93
Lognormal Distribution Areas of Application/96
Lognormal Parameter Estimation/98
Summary/101

6. RELIABILITY DATA PLOTTING/102

Properties of Straight Lines/102
Least-Squares Fit (Regression Analysis)/104



X%

CONTENTS ix

Rectification/106
Probability Plotting for the Exponential Distribution/108
Exact Failure Times/109
Interval Data/113
Alternative Estimate of the Failure Rate and Mean Life/115
Probability Plotting for the Weibull Distribution/115
Weibull Plotting—Exact Failure Times—CDF Method/117
Probability Plotting for the Normal and Lognormal Distributions/120
Normal Distribution/120
Lognormal Distribution/121
Multicensored Data/124
Kaplan-Meier Product Limit Estimation/124
Cumulative Hazard Estimation/125
Summary/126

7. PHYSICAL ACCELERATION MODELS/127

Accelerated Testing Theory/127

Exponential Distribution Acceleration/129
Weibull Distribution Acceleration/130
Lognormal Distribution Acceleration/ 132
Acceleration Models/136

The Arrhenius Model/137

Estimating AH with More than Two Temperature Cells/ 143
The Eyring Model/146

Other Acceleration Models/151

Degradation Models/152

Step Stress Data Analysis/ 154

Confidence Bounds and Experimental Design/158
Summary/ 160

8. SYSTEM MODELS AND RELIABILITY ALGORITHMS/ 162

Series System Models/162

The Competing Risk Model (Independent Case)/ 164
Parallel or Redundant System Models/165

Standby Models and the Gamma Distribution/167
Complex Systems/169

Defect Models and Discovery Distributions/172
General Reliability Algorithms/173

Burn-In Models/176

Data Analysis/179



x CONTENTS

CDF Estimation From Renewal Data/182
Summary/187

9. QUALITY CONTROL IN RELIABILITY: APPLICATIONS OF THE
BINOMIAL DISTRIBUTION/188

Sampling Plan Distributions/188
Permutations and Combinations/189
The Binomial Distribution/191
Nonparametric Estimates Used with Binomial Distribution/194
Confidence Limits. for the Binomial Distribution/194
Hypergeometric and Poisson Distributions/198
Types of Sampling/201
Risks/201
Operating Characteristic (OC) Curve/203
Binomial Calculations/203
Examples of Operating Characteristic Curves/204
Genera'ing a Sampling Plan/208
Further Graphical Techniques for Obtaining an OC Curve/213
Miniiaum Sample Size Plans/219
Nearly Minimum Sampling Plans/220
Relating an OC Curve to Lot Failure Rates/221
* Statistical Process Control Charting for Reliability/223

Summary 224
Bibliography/227

Index/233



1
Basic Descriptive Statistics

One of the most useful skills a reliability specialist can develop is the ability:
to convert a mass (mess?) of data into a form suitable for meaningful analysis.
Raw numbers by themselves are not useful; what is needed is a distillation
of the data into information. '

In this chapter we discuss several important concepts and techniques from
the field of descriptive statistics. These methods will be used to extract a
relevant summary from collected data. The goal is to describe and understand
the random variability that exists in all measurements of real world phenom-
ena and experimental data. ,

The topics we shall cover include: populations and samples; frequency
functions, histograms, and cumulative frequency functions; the population
cumulative distribution function (CDF) and probability density function
(PDF); elementary probability concepts; random variables, population param-
eters, and sample estimates; theoretical population shape models and data
simulation.

POPULATIONS AND SAMPLES

Statistics is concerned with variability, and it is a fact of nature that variation
exists. No matter how carefully a process is run, an experiment is executed,
or a measurement is taken, there will be differences in repeatability due to
the inability of any individual or system to control completely all possible
influences. If the variability is excessive, the study or process is described
as lacking control. If, on the other hand, the variability appears reasonable,
we accept it and continue to operate. How do we visualize variability in
order to understand if we have a controlled situation?
Consider the following example.
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EXAMPLE 1.1 AUTOMOBILE FUSE DATA

A manufacturer of automobile fuses produces lots containing 100,000 fuses
rated at 5 A. Thus, the fuses are supposed to open in a circuit if the current
through the fuse exceeds 5 A. Since a fuse protects other elements from
possibly damaging electrical overload, it is very important that fuses function
properly. How can the manufacturer assure himself that the fuses do indeed
operate correctly and that there is no excessive variability?

Obviously he cannot test all fuses to the rated limit since that act would
destroy the product he wishes to sell. However, he can sample a small quantity
of fuses (say, 100 or 200) and test them to destruction to measure the opening
point. of each fuse. From the sample data, he could then infer what the
behavior of the entire group would be if all fuses were tested.

In statistical terms, the entire set or collection of measurements of interest
(e.g., the blowing values of all fuses) define a population. $

A population is the entire set or collection of measurements of interest.

Note that a population may be finite as in the case of the fuses or it may
be infinite as occurs in the situation of a manufacturing process where the
population could be all product that has been or will be produced in a fabricat-
ing area. ‘

The sample (e.g., the 100 or 200 fuses tested to destruction) is a subset
of data taken from the population. .

A sample is a subset of data from the population.

The objective in taking a sample is to make inference about the population.

Note that data may exist in one of two forms. In variables data, the actual
measurement of interest is taken. In attribute data, the results exist in one
of two categories: either pass—fail, go-no go, in spec—out.of spec, and so
on. Both types of daia will be treated in this text.

In the fuse data example, we record variables data but we could also
transform the same results into attribute data by stating whether a fuse opened
before or after the 5 A rating. Similarly, in reliability work one can measure
the actual failure time of an item (variables data) or record the number of
items failing before a fixed time (attribute data). Both types of data occur
trequently in reliability studies.

* Later we will discuss such topics as choosing a sample size, drawing a_
sample randomly, and the “confidence” in the data from a sample. For now,
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however, let us assume that the sample has been properly drawn and consider
what to do with the data in order to present an informative picture.

HISTOGRAMS AND FREQUENCY FUNCTIONS

In stating that a sample has been randomly drawn we imply that each measure-
ment or data point in the population has an equal chance or probability of
being selected for the sample. If this requirement is not fulfilled, the sample
may be “biased” and correct inference about the population might not be
possible.

What information does the manufacturer expect to obtain from the sample
measurements of 100 fuses? First, the data should cluster about the rated
value of 5 A. Second, the spread in the data (variability) should not be
large, because the manufacturer realizes that serious problems could result
for users of the fuses if some blow at too high a value. Similarly, fuses
opening at too low a level could cause needless repairs or generate unnecessary
concerns. .

The reliability specialist randomly samples 100 fuses and records the data
shown in Table 1.1. It is easy to determine the high and low values from
the sample data and see that the measurements cluster roughly about the
number 5. Yet; there is still difficulty in grasping the full significance of
this set of data.

Table 1.1. Sample Data on 100 Fuses.

4.64 4.95 5.25 5.21 4.90 4.67 4.97 492 487 5.11
4.98 4.93 4.72 5.07 4.80 4.98 4.66 443 4.78 4.53
4.73 5.37 4.81 5.19 4.77 4.79 5.08 5.07 4.65 5.39
5.21 5.11 5.15 5.28 5.20 4.73 5.32 4.79 5.10 4.4
5.06 4.69 5.14 483 4.78 4.72 5.21 5.02 4.89 5.19
5.04 5.04 4.78 4.96 494 5.24 5.22 5.00 4.60 4.88
5.03 5.05 4.94 5.02 443 4.91 4.84 4.75 4.88 4.79
5.46 5.12 5.12 4.85 5.05 5.26 5.01 4.64 4.86 4.73
5.01 4.94 5.02 5.16 4.88 5.10 4.80 5.10 5.20 5.11

477 4,58 5.18 5.03 5.10 4.67 5.21 4.73 4.88 4.80

Let us try the following procedure:

1. Find the range of the data by subtrdcting the lowest from the highest
value. For this set, the range is 5.46 — 4.43 = 1.03.
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2.

Divide the range into 10 or so equally spaced intervals such that readings
are uniquely classified into each cell. Here, the cell width is 1.03/10
= (.10, and we choose the starting point to be 4.395, a convenient
value below the minimum of the data and carried out one digit more
precise than the data to avoid any confusion in assigning readings to
individual cells.

. Increment the starting point by multiples of the cell width until the

maximum value is exceeded. Thus, since the maximum value is 5.46,
we generate the numbers 4.395, 4.495, 4.595, 4.695, 4.795, 4.895, 4.995,
5.095, 5.195, 5.295, 5.395, and 5.495. These values will represent the
end points or boundaries of each cell, effectively dividing the range of
the data into equally spaced class intervals covering all the data points.
Construct a frequency table as shown in Table 1.2 which gives the
number of times a measurement falls inside a class interval.

Make a graphical representation of the data by sketching vertical bars
centered at the midpoints of the class cells with bar heights proportionate
to the number of values falling in that class. This graphical representation
shown in Figure 1.1 is called a histogram.

A histogram is a graphical representation in bar chart form of a frequency
table or frequency distribution.

Table 1.2. Frequency Tabile of

Fuse Data.

CELL BOUNDARIES NUMBER IN CELL
4.395 to 4.495 2
4.495 to 4.595 2
4.595 to 4.695 8
4.695 to 4.795 15
4.795 to 4.895 14
4.895 to 4.995 13
4.995 to 5.095 16
5.095 to 5.195 15
5.195 to 5.295 11
5.295 to 5.395 3
5.395 to 5.495 1

Total Count 100
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Figure 1.1. Histogram of Measurements.

Note that the vertical axis may represent the actual count in a cell or it
may state the percentage of observations in the total sample occurring in
that cell. Also, the range here was divided by the number 10 to generate a
cell width, but any convenient number (usually between 8 and -20) could
be used. Too small a number would not reveal the shape of the data and
too large a number would result in many empty cells and a flat appearing
distribution. Sometimes a few tries are required to arrive at a suitable choice.

In summary, the histogram provides us with a picture of the data from
which we can intuitively see the center of the distribution, the spread, and.
the shape. The shape is important because we usually have an underlying
idea or model as to how the entife population should look. The sample
shape either confirms this expectation or gives us reason to question our
assumptions. In particular, a shape that is symmetric about a center, with
most of the observations in the central region, might reflect data from certain
symmetric distributions, like the normal or Gaussian distribution. Alterna-
tively, a nonsymmetric appearance would imply the existence of data points
spaced farther from the center in one direction than in the other.

For the data presented in the fuse example, we note that the distribution
appears reasonably symmetric. Hence, based on the histogram and the way
the ends of the distribution taper off, the manufacturer believes that values
much greater or much less than about 10% of the central target are not
likely to occur. This variability he accepts as reasonable.
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CUMULATIVE FREQUENCY FUNCTION

There is another way of representing the data which can be very useful.
By reference to Table 1.2, let us accumulate the number of observations
less than or equal to a given value as shown in Table 1.3. Such a means of
representing data is called a cumulative frequency function.

The graphical rendering of the cumulative frequency function is shown
as Figure 1.2. Note the cumulative frequency distribution is never decreasing
and starts at zero and goes to the total sample size. It is often convenient
to represent the cumulative count in terms of a fraction or percentage of
the total sample size used. In that case, the cumulative frequency function
will range from zero to 1.00 in fractional representation or to 100% in percent-
age notation. In this text, we will often employ the percentage form.

Table 1.3 and Figure 1.2 make it clear that the cumulative frequency
curve is obtained by summing the frequency function count values. This
summation process will later be generalized by integration when we discuss
the population concepts underlying the frequency function and the cumulative
frequency function in the next section.

THE CUMULATIVE DISTRIBUTION FUNCTION AND THE
PROBABILITY DENSITY FUNCTION

The frequency distribution and the cumulative frequency distribution are
calculated from sample measurements. Since the samples are drawn from a
population, what can we state about this population? The typical procedure

Table 1.3. Cumulative Frequency Function.

UPPER CELL BOUNDARY NUMBER OF OBSERVATIONS
(ucs) LESS THAN OR EQUAL TO UCB
4.495 2
4,595 4
4.695 12
4.795 27.

4.895 41
4.995 54
5.095 70
5.195 85
5.295 96
5.395 99

5.495 100
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Figure 1.2. Plot of Cumulative Frequency Function.

v

is to assume a mathematical formula that provides a theoretical model for
describing the way the population values are distributed. The sample histo-
grams and the cumulative frequency functions are then estimates of these
population models. '

The model corresponding to the frequency distribution is the probability
density function (PDF), denoted by f(x) where x is any value of interest.
" The PDF may be interpreted in the following way: f(x) dx is the fraction
of the population values occurring in the interval dx. In reliability work,
we often have time ¢ as the variable of interest. So f(¢) dt is the fraction
of failure times of the population occurring in the interval dr. A very simple
example for f(t) is called the exponential distribution given by the equation

f)y=re™  0<t<o,

where A is a constant. The plot of f(¢) is shown as Figure 1.3. The exponential
distribution is a widely applied model in reliability studies and forms the
basis of Chapter 3.

The cumulative frequency distribution similarly corresponds to a population
model called the cumulative distribution function (CDF), denoted by F(x).
The CDF is related to the PDF via the following relationship

Fo) =[_foran
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f(t)

A

t

Figure 1.3. Plot of Probabliity Density Function for Exponential Distribution.

where y is the dummy variable of integration. F(x) may be interpreted as
the fraction of values in the population less than or equal to x. Alternatively,
F(x) gives the probability of a value less than or equal to x occurring in a
single random draw from the population described by F(x). Since in reliability
work we usually deal with failure times, ¢, which are nonnegative, the CDF
for population failure times is related to the PDF by

t
FO=[fo)dn.  0si<ew
o
For the exponential distribution,

t t
F(t)=f Ae~*vdy =—e'”] =1—e Mt
0

0

The CDF for the exponential distribution is plotted as Figure 1.4.

When we calculated the cumulative frequency function in the fuse example,
we worked with grouped data (data classified by cells). However, another
estimate of the population CDF could have been generated by ordering the
individual measurements from smallest to largest and then plotting the succes-
sive fractions

X =

&I

X lw
|



