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'PREFACE

This book is based on a set of lectures delivered at
Glasgow University. I wish to thank Professor T. M.
MacRoserT and Dr. T. S. GRaHAM whose lecture notes
were of great:, help to me in preparing these lectures. My
thanks are also due to Dr. ErizaBeTH A. McHARG and
to Dr. DaNIEL MARTIN for their valuable suggestions and
for the care with which they have corrected the proofs.

R. P. GILLESPIE

Glasgow.
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CHAPTER I
PARTIAL DERIVATIVES

§ 1. Functions of Two Variables

The subject of this book, partial differentiation, is
concerned with the rates of change of functions of more
than one variable. It involves extensions of the ideas and
methods of the differential calculus as applied to functions
of a single variable, and it will be assumed that the reader
is familiar with these ideas and methods.

A simple example of a function of the two independent
variables 2 and y is that of the function z defined to be
222 + 8y2. The value of z depends on the values given
independently to the two variables # and y, and to obtain-
a value of 2, # and y must simultaneously be given values.
Geometrically, these pairs of values of z -and y can be
represented as points in the (z, y) plane and so a function
z of the two variables z and y is defined at points in the
(z, y) plane, just as a function of the single variable
is defined at points on the z-axis. Functions of two
variables # and y may be defined in regions of the (z, y)
plane, just as functions of the single variable z are defined
in intervals of the z-axis. Thus the function /(1 —22—y?)
has real values only inside and on the circle whose centre
is the origin of coordinates and whose radius is 1.

When z is a function of the independent variables z
and y, it is defined for pairs of values (z, y), and for each
such pair there exists an ordered set of three numbers
(z, g, %), viz., the pair z, y and the corresponding value
of z. Each of these sets represents a point in (2, ¥, )
space and the values of the function correspond to the
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aggregate of these points in space. In the case of the
function z = 222 + 8y? this aggregate consists of the
points of the paraboloid with this equation. In general
the functions dealt with are defined over regions of the
(@, y) plane and are represented by surfaces in (z, y, )
space, and it will be assumed throughout that the reader
is familiar with the elements of the theory of analytical
geometry of three dimensions. *

The discussion of the rate of change of a function of
two variables is essentially a more complicated matter
than that of the rate of change of a single variable, since
the variables vary independently. The simplest way to
approach the problem is to find the rate of change of the
function with respect to one of the variables while the
other is kept constant. For example, if z = f(z, y) =
2x%y 4 8xy?, the rate of change of z with respect to @
may be found, where y is held constant. To do this 2 is
differentiated with respect to @, treating y as a constant,
and the expression 4zy + 8y? is obtained. This quantity
is called the partial derivative of z at (2, y) with respect
to 2 and is denoted by 0z/0z or f,. The process of differen-
tiating a function with respect to one variable, while
treating the other variables on which the function depends
as constants, is called partial differentiation. If, in the
above example, « is kept constant and z is differentiated
with respect to y, the expression 2% 4- 62y, the partial
derivative at (z, y) of 2 with respect to y, is obtained.
This derivative, as above, is written dz/dy or f,.

In the case of a function y = f(z) of the single variable
@, the derivative dy/dz is represented geometrically by
the gradient of the tangent at the point (z, y) on the curve
with equation y = f(2), and from this can be deduced a
geometrical interpretation of the above-defined partial
derivatives. The value of the partial derivative of the
function z = f(z, y) with respect to 2, when z = @,

* See W. H. McCrea, Analytical Geometry of Three Dimensions.
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Y = Yo, is the value, when @ = #,, of the function of z,
fo(@, yo). Now 2 = f(2, 4o), ¥ = Y, is the equation of the
intersection of the surface 2 = f(#, y) by the plane y = y,,
i.e., it is the equation of a curve on the surface z = f(z, y)
and the value of the partial derivative f,(z,, y,) is there-
fore the tangent of the angle which the tangent to this
curve at the point (z,, y,) makes with a line in the plane
y = y, parallel to the z-axis. Similarly 0z/dy for z = ,,
y = y, is the value of the derivative of the function of
Y, f(zq y), when y = y,, and hence is the tangent of the
angle which the tangent at the point (z,, y,) on the
curve of intersection of the surface z = f(z, y) by the
plane # = ,, makes with a line parallel to the y-axis in
this plane.

Since the partial derivative with respect to  of the
function f(z, y) when # = 2y, y = ¥, is the derivative of
the function of z, f(z, y,), when & = &, it is defined as

the limit ‘
’1‘1_!:(1) {f(@o + h, Yo) — F(o> Yo)}/ s

if this limit exists. Similarly the partial derivative of
f(z,y) when @ = x,, y =Y, with respect to y is the

limit
ii_l)l(l) {f(@o, Yo + k) — f(®o> yo)}/k,

if it exists.

These two limits are examples of simple limits of a
function of two variables and the general definition of
such Timits will now be given. If in the function f(z, y),
y is given the constant value y, and the function is con-
sidered as the function f(, y,) of the single variable ,
it may happen that the limit of this function of z

lim f(a, o)

%>%y

exists. Such a limit is called a simple limit of a function
of two variables. As y is given different values the limit,
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lim f(2, y), will assume values, when they exist, cor-
xX—>%y

respondmg to the values of y, i.e., the limit is a function-
of y, say
lim f(z, y) = @(y)-

z—>%,

Similarly the limit

lim f(z, y) = y(2)
y—>%
is a function of 2.

In obtaining a simple limit one of the two variables is
held constant, but it will now be shown that a limit of
a function of two variables can be defined in which both
variables vary simultaneously. The function f(z,y) is
said to have the double limit L as z tends to z, and y
tends to y,, if, given any positive number &, a non-zero
number 7 can be found such that | f(z, y) — L | < ¢ for
‘those values (z, y) for which f(z, y) is defined and for
which |2 —2y| <% and |y —y,| <%, This double
limit is written

lim f(z, y) = L

x—>%,
y—>%

It is easy to show that an alternative form of the
definition of a double limit can be obtained by replacing
the condition |2 — 2y | <7, |y — Yo | <7 by the con-
dition 4/{(z — @)% 4+ (¥ — ¥o)?} < 7. For it is clear that
if the first of these conditions is satisfied, the second is
satisfied, and if, on the other hand, the second condition
is satisfied, then | f(z, y) — L | < ¢ for those values (z, y)
for which f(, y) is defined and for which | z — z, | <7/ V2
and |y — Yl < 7/4/2, so that the first condition is
satisfied using 7/4/2 as the 7 of the condjtion. Geome-
trically, the first form of the definition means that, given
&, there can be found a square of side 27, with (2, ¥o) .
as its centre-point and with sides parallel to the coor-
dinate axes, such that |f(z,y) — L | < & at all points
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inside the square, while the second form means that,
given ¢, a circle can be found, with centre (z,, y,) and
radius 7, such that | f(z, y) — L | < ¢ at all points inside
the circle.

Ez. 1. Show that the double limit of the function (z®+y®)/(z8+y?)
for (z, y) tending to (0, 0) is zero.

Ez. 2. Show that the double limit of the function wy/(2? + y?)
for (2, y) tending to (0, 0) does not exist.

Corresponding to the ideas of simple and double limits
of a function of two variables there can be introduced
the ideas of simple continuity, i.e., continuity with
respect to one of the two variables by itself, and of double
continuity, i.e., continuity with respect to the pair of g’“"
variables. The function f(z, y) is said to be continuous !
with respect to x at (z,, y,) if ;

:1mf(w, Yo) = f(gs Yo)s

and it is said to be continuous with respect to y at
(@os o) if .

lim fl@g y) = f(@q, Yo)-

Y—=>Y ’

The function f(z,y) is said to be continuous with
respect to the pair of variables (x, y) at (z,, y,) if
the double limit of f(z, y) as (z,y) tends to (z,, y,) is
f(®g, yo), i.e., given any positive number & a non-zero
number % can be found such that

[ (@, y) — f(@o yo) | <eif v{(@ —20)* + (y — 90} <1
If in this inequality those (z, y) pairs are taken for which
Y = ¥y, the condition is

| f(@, yo) — f(@os 90) | <& if |2 — 70| <7,

t@tvf(w‘y?mtmuous with respect to 2 at (2o Yo)-

tté be hown that f(, y) is continuous with
{@5,lyo), and thus if f(2, y) is continuous
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with respect to the pair of variables (z, y) at (2, ¥,) it
is continuous there with respect to the variables separately.

If a function of two variables is continuous at a point
with respect to the variables separately, it does not follow
that it is continuous there with respect to the pair of
variables, as is seen by considering the function f(a, y),
defined as zy/(22 + y?) when 2 and y are not both zero,
and as zero at (0,0). This function is continuous at
(0, 0) with respect to the variables separately, but since
it possesses no double limit as (z, y) tends to (0, 0) it is
not continuous at (0, 0) with respect to the pair of vari-
ables.

A function f(z, y) is said to be continuous with respect
to the pair of variables (z, ) in a region R of the (z, y)
plane, if it is continuous at every point of the region;
ie.,

(i) f(z, y) has a definite value at every point of the
region,

(ii) corresponding to any point (z, y,) of the region,
given any positive number &, a non-zero number 7 can
be found such that | f(z, y) — f(2e o) | <& if |2 — 20| <9,
|y — Yo | <n and (z, y) belongs to the region. The value
of n depends on ¢ and, in general, on the particular point
(%o o). If an 7 can be found which serves for every
(@ Yo) of the region, the function is said to be uniform-
ly continuous in the region. It can be proved * that
a function which is continuous with respect to the pair
of variables in a closed region, i.e., a region which con-
tains its boundaries, is uniformly continuous in that
region.

§ 2. Functions of Three or More Variables

It is easy to extend the ideas of the last paragraph to
functions of more than two variables. A function such as

* See, for example, Hobson, The Theory of Functions of a Real
Variable (Second Edition), Vol. I, p. 274.
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f(@, ¥y, 2) = a2 + @ys + x2 + y% is a function of the
three independent variables z, y, z. A function of three
variables is defined at points in three-dimensional space
and it will be represented by a “surface” in four-dimen-
sional space. Partial derivatives of functions of three
variables are defined as in the case of functions of two
variables. The partial derivative of f(z, y, ) with respect
to z at the point (2, y, 2), written as above 9f/dz or f,,
is the rate of change of f at this point with respect to ,
where y and 2 are kept constant. Similarly df/dy or f, is
the rate of change of f with respect to y, where 2z and 2
are kept constant, and 9f/dz or f, is the rate of change
of f with respect to 2, where # and y are kept constant.
In the above example, where f = 22y + ayz + 222 + y%,
straightforward differentiation gives

fo=2xy+yz+2% f,=a+az+ 2y, f,=ay+223+4y>

The partial derivatives of f(z, y, 2) at the point (zy, Yo %)
are given by the following limits, if they exist:

Ja(@os Yo %0) = ’1‘1_1::) {f(@o + P, Yo %) — f(@0s Yos 20)} /P,
fv(wo’ Yo zo) =}}1_I>I(1) {f(wo: Yo+ k, zo) - f(wo’ Yoo zo)}/k’
Jo(@o, Yo» 20) = il_r:(l) {f@o Yo 20 + 1) — f(@0, Yo» 20)}/1

Continuity of the function f(a, y, 2) with respect to
the variables (2, y, 2) is defined analogously to the con-
tinuity of f(x, y) with respect to the pair (z, y). The
.function f(, y, 2) is said to be continuous with respect
to the variables (z, y, 2) at (@, ¥, 2,) if

(i) f(z, y, 2) has a definite value f(z,, ¥, %) at (Zgs Yo» Z0)s

(ii) given any positive number & a non-zero number
7 can be found such that

If(w’ y’z) —f(mo’yo’ zo) | <e if lw - wol <"7’
[y — Yol <m [2—2 | <7.
Just as in the case of a function of two variables a
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function of three variables can possess continuity with
respect to the variables separately and also in this case
the function may possess continuity with respect to any
pair of the three variables. -

It is clear that partial derivatives may be defined for a
function of any number of variables. For example the
partial derivative of the function fl@y g, « « o, @) With
respect to the variable @, at the point (@, @0, . « .5 T4°)
is defined to be the limit

;}fm (f@° + by @0 -+ o 2,0) — f(@° &, -+« o @)} Pr-
—0

In differentiating such a function partially with respect
to one particular variable, all the other variables are
treated as constants. The definition of continuity is
easily extended from that of a function of three variables
to that of a function of any number of variables.

§ 8. Higher Partial Derivatives

In the case of a function of a single variable z, y = f(z),
the second derivative d2y/dx® or f(z) is defined as the
rate of change of dy/dz or f'(x) with respect to 2, the
third derivative d®y/dz® or f"'(z) as the rate of change
of d?y/dz® with respect to z, and so on. Extending this
idea to f(z, y), a function of two variables, 0%f/0x? or fre
is the rate of change at (z, y) with respect to z of the
function df/dz or f,, y being held constant, and 0%f/0y?
or f,, is the rate of change at (z, y) with respect to y of
the function df/dy or f,, ® being held constant. For
example, if

f(z, y) = 4a®y? — Szy* + 2z%* + 8a® + day,
o= 12032 — 5yt + day® + 62 + 4y, foo = 24ay*+4y*+6,
f, = 8a%y — 20@y® + 4ady + 4z, [,y = 82% — 60xy? + 4’

The partial derivatives f,,, f,, are said to be of the
second order. The value of the partial derivative fp.
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at (zq y,) is given by the limit
,1‘1310 {fal@o + P, Yo) — fol@o» Yo }h

and similarly f,, at (z,, y,) is given by
lim {f,(@p Yo + k) — fo(Ze> Yo)}/k-
E—0

If these limits do not exist, the derivatives f,, and f,,
do not exist at (zy, ¥,).

Besides f,. and f,, there may be defined two more
partial derivatives of the second order of the function
f(z, y), viz., the rate of change of the function f, with
respect to y, when 2 is held constant, a derivative which
is denoted by d2%f/dy0dz or f,., and the rate of change of the
function f, 'with respect to #, when y is held constant, a
derivative which is denoted by 02f/dzdy or f,,. Hence the
value of f,, at the point (z,, y,) is given by the limit

lim {fw(wo’ Yo = k) = fw(wov yo)}/ks
k—>0

and the value of f,, at the same point by
lim {f,(2o + ks Yo) — J(Zo> Yo)}/h.
h—>0

In the above example
foa = 240y —20y°+ 8ay+4, fo, = 24ay—20y°+8ay+4,

the remarkable thing being that f,, and f,, are exactly
the same functions, and it can easily be verified by dif-
ferentiating other functions that in general this is the
case. It will be shown later in this paragraph that when
certain continuity conditions are satisfied f,, is always
identical with f,,. In other words the order in which
differentiation with respect to # and with respect to y
takes place is irrelevant. This property is known as the
commutative property of partial differentiation and
throughout this book it will be assumed, unless otherwise
stated, that the partial derivatives of the functions dealt
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with possess the commutative property. Derivatives in
which the function is differentiated with respect to more
than one of the variables are called mixed derivatives.

Mixed derivatives of orders higher than the second are
formed in a similar fashion to those of the second order.
For example, the partial derivative 93f/0x®dy is obtained
by

(i) differentiating with respect to y,

(ii) then differentiating with respect to z,

(iii) then differentiating with respect to again.
From the above mentioned commutative property,

fac:m/ = fsz = fv:cm

ﬂ_i(ﬁ_) _29 (_ai) _ o
0x*0y  Ox \0xdy Oyox) ~ Oxdyox

for

~ ow

__9”_(_3£ _ ﬂ) _

= Oady \oz) ~ 0yox \Oz) ~ 0yox?

For any mixed derivative a similar proof shows that the

differentiation may be performed in any order.
Higher derivatives of functions of more than two

variables are defined exactly as in the case of functions

of two variables and, as before, the differentiation may
be performed in any order.

The following are straightforward examples on partial differen-
tiation involving derivatives of higher order than the first.

1. If u = log (x 4+ y?), show that d%u/ox* + ufdoy? = 0.
2. If u = tan-! {zy/+/(1 + 2® + y?)}, show that
Ugy = (1 + 2* + y“)— %’ Uzgyy = 152y/(1 + 2® + y’)%-
3. If a%® + b%y® — ¢%?* = 0, show that
Raalyy = (zwv)z'

4. If u = log (22 + y* + 2?), show that

Rlhyy = Ylhyy = gy
The Commutative Property of Partial Differentiation
A set of conditions will now be given, sufficient to
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