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This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician, whose interest in differential equations may be highly theoretical, intensely
practical, or somewhere in between. We have sought to combine a sound and accurate
(but not abstract) exposition of the elementary theory of differential equations with
considerable material on methods of solution, analysis, and approximation that have
proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent.

A Changing Learning Environment

The environment in which instructors teach, and students learn, differential equations
has changed enormously in the past few years and continues to evolve at a rapid pace.
Computing equipment of some kind, whether a graphing calculator, a notebook com-
puter, or a desktop workstation is available to most students of differential equations.
This equipment makes it relatively easy to execute extended numerical calculations,
to generate graphical displays of a very high quality, and, in many cases, to carry out
complex symbolic manipulations.

The fact that so many students now have these capabilities enables instructors, if
they wish, to modify very substantially their presentation of the subject and their
expectations of student performance. Not surprisingly, instructors have widely varying
opinions as to how a course on differential equations should be taught under these
circumstances.

One option is to focus somewhat less attention on the manipulative details of finding
solutions, and correspondingly more attention on the conclusions that can be drawn
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Preface

from them. Consequently, at many colleges and universities courses in differential
equations are rapidly becoming much more visual, much more quantitative, and much
less formula-centered than in the past.

Mathematical Modeling

The main reason for solving many differential equations is to try to learn something
about an underlying physical process that the equation is believed to model. It is basic
to the importance of differential equations that even the simplest equations correspond
to useful physical models, for example, exponential growth and decay, spring-mass
systems, or electrical circuits. Gaining an understanding of a complex natural process
is usually accomplished by combining or building upon simpler and more basic models.
Thus a thorough knowledge of these models, the equations that describe them, and their
solutions, is the first and indispensable step toward the solution of more complex and
realistic problems.

More difficult problems often require the use of a variety of tools, both analytical
and numerical. We believe strongly that pencil and paper methods must be combined
with effective use of a computer. Quantitative results and graphs, often produced by a
computer, serve to illustrate and clarify conclusions that may be obscured by complex
analytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis — to determine the
qualitative features of the solution as a guide to computation, to investigate limiting or
special cases, or to discover which ranges of the variables or parameters may require
or merit special attention.

Thus, a student should come to realize that analysis and computation must frequently
be combined, and that results (however they were obtained) are often most easily
understood if presented in graphical form.

A Flexible Approach

From a student’s point of view, the problems that are assigned as homework and those
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number, and above all the variety and range, of the problems
that it contains. There are far more problems than any instructor can use in any given
course, and this provides instructors with a multitude of possible choices in tailoring
their course to meet their own goals and the needs of their students.

The new learning environment, based on the emerging role of computing technology
in instruction, calls for a new kind of flexibility in a textbook. For instance, many more
or less routine problems, such as those requesting the solution of a first or second
order initial value problem, are now easy to solve by a computer algebra system. This
revision includes quite a few such problems, just as the earlier editions did. We do
not state in these problems how they should be solved, because we believe that it is
up to each instructor to specify whether their students should solve such problems by
hand, with computer assistance, both ways, or perhaps not at all. Also, there are many
problems that call for a graph of the solution. Instructors have the option of specifying
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whether they want an accurate computer-generated plot or a hand-drawn sketch, or
perhaps both.

We have also added a great many problems, as well as some examples in the text,
that call for conclusions to be drawn about the solution. Sometimes this takes the
form of asking for the value of the independent variable at which the solution has a
certain property. Other problems ask for the effect of variations in a parameter or for
the determination of a critical value of a parameter at which the solution experiences a
substantial change. Such problems are typical of those that arise in the applications of
differential equations, and, depending on the goals of the course, an instructor has the
option of assigning few or many of these problems.

To be widely useful a textbook must be adaptable to a variety of instructional strate-
gies. This implies that instructors should have maximum flexibility to choose both the
particular topics that they wish to cover and also the order in which they want to cover
them. We provide this flexibility by making sure that, so far as possible, individual
chapters are independent of each other. Thus, after the basic parts of the first three
chapters are completed (roughly Sections 1.1, 2.1 through 2.3, and 3.1 through 3.6)
the selection of additional topics, and the order and depth in which they are covered, is
at the discretion of the instructor. For example, while there is a good deal of material
on applications of various kinds, especially in Chapters 2, 3, 9, and 10, most of this
material appears in separate sections, so that an instructor can easily choose which
applications to include and which to omit. Alternatively, an instructor who wishes to
emphasize the details of numerical algorithms for approximating solutions of differen-
tial equations (the subject matter of Chapter 8) can use this chapter immediately after,
or in conjunction with, the material in Chapter 2 on first order equations. Or, an in-
structor who wishes to emphasize a systems approach to differential equations can take
up Chapter 7 (Linear Systems) and perhaps even Chapter 9 (Nonlinear Autonomous
Systems) immediately after Chapter 2. Or, while we present the basic theory of linear
equations first in the context of a single second order equation (Chapter 3), many
instructors have combined this material with the corresponding treatment of higher
order equations (Chapter 4) or of linear systems (Chapter 7). Many other choices and
combinations are also possible and have been used effectively with earlier editions of
this book.

Although we note repeatedly that computers are extremely useful for investigating
differential equations and their solutions, and although many of the problems are best
approached with computational assistance, the book is adaptable to courses having
various levels of computer involvement, ranging from little or none to intensive. The
text is independent of any particular hardware platform or software package. For courses
having a strong computer component, however, students may need supplements on the
locally available computing platforms and software.

Two software packages that are widely used in differential equations courses are
Maple and Mathematica. The books Differential Equations with Maple and Differential
Equations with Mathematica, by K. R. Coombes, B. R. Hunt, R. L. Lipsman, J. E.
Osborn, and G. J. Stuck, all at the University of Maryland, are available with this book
for those who make use of these packages.

There is also a solutions manual, by C. W. Haines of Rochester Institute of Technol-
ogy, that contains detailed solutions to many of the problems in the book.
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Major Changes in the Sixth Edition

Readers who are familiar with earlier editions will find that this one has the same
general organizational structure. In addition to a host of minor improvements, there are
the following major revisions.

1. The chapter on numerical methods has been considerably revised. The backward
Euler method is introduced in Section 8.1, foreshadowing a more extended discussion
of higher order backward differentiation formulas in Section 8.5. There is also a more
detailed description of multistep methods in general, and more discussion of factors
to consider when choosing a method. Adaptive methods are introduced in Section 8.3,
and illustrated with the Euler and improved Euler formulas. Section 8.6 contains an
expanded discussion of error control and stability, including an example illustrating
how the reduction of step size affects truncation and roundoff errors.

2. There are nearly 300 new problems, many of which assume the availability of
computing technology.

3. Many new (and revised) problems and examples investigate the manner in which a
solution depends on one or more parameters. These problems and examples support the
idea that often it is more important to understand how a solution depends on a parameter
than to obtain the solution for some particular value of the parameter. Consequently,
bifurcation points and other critical parameter values, at which a solution experiences
significant change, are explored frequently.

4. The material on the method of Frobenius, where the indicial equation has equal
roots or roots differing by an integer, has been consolidated into a single section
(Section 5.7).

5. Some new examples, and quite a few new problems, have been added to the chapter
on Laplace transforms. Again, quantitative conclusions, graphs, and an investigation
of parameter dependence are often called for in these problems.

6. There is a greater emphasis on visualization. All figures have been redrawn, there
are more examples whose solutions are presented graphically, and more problems that
ask students to generate graphs, or to draw conclusions from them.

7. The more quantitative and geometrical point of view is particularly evident in
Chapter 10, which deals with partial differential equations and Fourier series. Many
more problems ask for quantitative conclusions to be drawn from a solution, and many
more graphs of solutions are requested.

As the subject matter of differential equations continues to grow, as new technologies
become commonplace, as old areas of application are expanded, and as new ones
appear on the horizon, the content and viewpoint of courses and their textbooks must
also evolve. This is the spirit we have sought to express in this book.

William E. Boyce
Troy, New York
April 4, 1996
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Introduction

In this brief chapter we try to give perspective to your study of differential equations.
First, we indicate several ways of classifying equations, in order to provide organi-
zational structure for the remainder of the book. Later, we outline some of the major
figures and trends in the historical development of the subject. The study of differential
equations has attracted the attention of many of the world’s greatest mathematicians
during the past three centuries. Nevertheless, it remains a dynamic field of inquiry
today, with many interesting open questions.

1.1 Classification of Differential Equations

Many important and significant problems in engineering, the physical sciences, and
the social sciences, when formulated in mathematical terms, require the determination
of a function satisfying an equation containing one or more derivatives of the unknown
function. Such equations are called differential equations. Perhaps the most familiar
example is Newton’s law F' = ma. If u(t) is the position at time ¢ of a particle of mass
m acted on by a force F', then we obtain

d*u [ du:l
m =Flt,u —|, (1)

dr? dt

where the force F' may be a function of ¢, u, and the velocity du/dt. To determine
the motion of a particle subject to a given force F it is necessary to find a function u
satisfying the differential equation (1).



Introduction

The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to describe some of the methods that have proved effective
in finding solutions, or in some cases approximating them. To provide a framework
for our presentation we first mention several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One of the more obvious classifi-
cations is based on whether the unknown function depends on a single independent
variable or on several independent variables. In the first case only ordinary derivatives
appear in the differential equation, and it is said to be an ordinary differential equa-
tion. In the second case the derivatives are partial derivatives, and the equation is called
a partial differential equation.

Two examples of ordinary differential equations, in addition to Eq. (1), are

'Q(r) PLUQ)
dr? dt
for the charge Q(r) on a capacitor in a circuit with capacitance C, resistance R,
inductance L, and impressed voltage E(t); and the equation governing the decay with
time of an amount R (7) of a radioactive substance, such as radium,
dR(t)
dt

where £ is a known constant. Typical examples of partial differential equations are the
potential, or Laplace’s, equation

* = Q(f)—E(I) (2)

= —kR(1), (3)

8214(_\'.)‘) 4 3214(.\'.)’)
ax> ay?

the diffusion or heat conduction equation

=0, (4)

qd u(x,t) du(x l)
o”
ax> ot

and the wave equation

76 u(x,r) dzu(.\‘.t)

(6)
ax? ar?

Here o and a” are certain constants. The potential equation, the diffusion equation,
and the wave equation arise in a variety of problems in the fields of electricity and
magnetism, elasticity, and fluid mechanics. Each is typical of distinct physical phenom-
ena (note the names), and each is representative of a large class of partial differential
equations.

Systems of Differential Equations. Another classification of differential equations
depends on the number of unknown functions that are involved. If there is a single
function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example,



