COLOUR ll
|SLAND

L
N

PEEKSVILLE |-

8660623

MASTER
MEMORY
MAP
FOR THE
COMMODORE 64

A GUIDE TO THE INNER
WORKING OF THE
COMMODORE 64’'s BRAIN CELLS

by
PAUL PAVELKO
and
TIN ELLY

1 |
i il
li i
i
HE TR

Prentice/Hal ‘) ?\ International

Englewood Cliffs, NJ London New Delhi Rio de Janerio
Singapore Sydney Tockyo Toronto Wellington

M
"
N
CF
o
Jod

ISBN 0-13-574351-b

.@' ©Copyright 1983 by Educational Software, inc.

Commodore 64 is a trademark of Commodore Business Machines.
Professor von Chip and Prototype are trademarks of
Educational Software, inc.

All rights reserved. No part of this book
may be reproduced, in any way
or by any means, without permission in writing from the publisher.

10 9 8 7 6 5 43 21

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter

8650623

TABLE OF CONTENTS

PRELUDEcovvnn... P 1
SOURCESoovvvinneen., [yz . 2
GLOSSARY \ W L C 3
HowtoPEEKandPOKE...........;\._.;.'.;;,. 6
BYTES and BITScoovviinn... R 10
LOWER ADDRESSESttt 15
GRAPHICS ADDRESSESooviiiiiiiiiaaiaaaennn. 63
SOUND ADDRESSESttt 82
COMPLEX INTERFACE ADAPTER (CIA) #1 95
COMPLEX INTERFACE ADAPTER (CIA) #2 101
APPENDICES ...ttt e 105
A. RECONFIGURING THE MEMORY MAP 106
B.ROMMEMORY MAPiiiiiiiiiaaanaannnn.. 111
C.THE KERNAL ...ttt 113
D. BASIC ROM ROUTINE STARTING ADDRESSES 117
E. THE SERIAL BUSoitee i 126
F. THE COMPLEX INTERFACE ADAPTERS (CIA) 128
G. BEING AN ARTIST wiTH COMMODORE 64 GRAPHICS 130
H. GRAPHICS PROGRAMMINGcccouvn... 133
VIDEO BANK SELECTION 133
PROGRAMMABALE CHARACTERS 134
APROTOEXAMPLEccovvivneennnennn. 134
ASCII and CHR$ CODEScovvnernin... 137
SCREEN DISPLAY CODEScovvvnenn.. 139
I. HOW TO CREATE SPRITESccovvirineann... 141
DESIGN THE SPRITEciiviiiiiinannn. 141
STORING THE SPRITE IN MEMORY 142
SETTING THE SPRITE POINTERS 143
CHOOSING THE COLORcccouevnn... 144
MULTICOLOR SPRITESccovivvnenns 145

SPRITE ALGORITHM OUTLINE 150

J. COMPOSING MUSIC .0su:conmnos snmnns« snmens sus 154
SOUND PROGRAMMING TECHNIQUES 154
OUTLINE FOR SINGLE VOICE 156
VOICEFLOWCHARTt 158

SOUND EXAMPLES:

BSCALBS . cnunvs samens s cuemms insmns s susy 159

PILIMEP' o ain s Caisan snminn ¢ 3 s Saismos s e 161

BOMB 163

BUSYSIGNAL 165

SIBREN wvsssomans sxmnsss sanass feesns s swpns 166

DRIPPING: (nuwes camwns s cmpnus vamnne s smmas 168

PLANE T 170
MULTIPLE VOICE PROGRAMMING 171
OUTLINE FORMULTI-VOICE 173
ADVANCED SOUND

PROGRAMMING TECHNIQUES 176
MUSICNOTEVALUES 177

PRELUDE
TO THE COMMODORE 64 MASTER MEMORY MAP

Welcome all, beginning or - expert programmer, to ESI's
COMMODORE 64 MASTER MEMORY MAP! This book will be
your guide into the inner working of the Commodore 64’s ‘brain cells’.
This is truly a map, a guide to the special places inside the operating
system of the computer. These places will help you add new features to
the programs you write, making them really come alive!

Along the way, you have the humor of Professor Von Chip and the
friendly alien Prototype to help make the journey a productive one.

MEMORY LIBRARY

I

The Master Memory Map is divided into sections to aid you. Each
section deals with a particular part of the memory. There are lots of
programming examples, too, because sometimes it’s easier to under-
stand an example when you see it on the screen instead of just reading it.
Some of the programming examples add a useful utility to BASIC, like
the RENUMBER routine. Others serve as useful programming ‘tricks’.
In every case, you should study the listings and play with the code to see
what happens.

The appendices go into more detail, showing how to do something like
create sprites or produce a sound. They give longer programming
examples and show you some of the advanced things you can do with the
Commodore 64.

This book really isn’t a novel, so you can start reading anywhere. But
sometime you should read it from cover to cover; sooner or later you’ll
see new ways to use the computer. This moment of enlightenment - a
creative flash - is what makes working with a computer so much fun!

We’ve worked hard to make the Master Memory Map easy to read
and use. Look in the upper right hand page corner for a guide that will
show you which locations are covered on those pages. Just flip through
the book until you come to the locations you need. The appendix sections
are also marked in a similar way.

‘@' Prototype, sometimes just called Proto, will help you find locations

and routines that the beginning or intermediate programmer will use
most often. Look for him in the margin as you flip through the book.

A COPY OF THE PROGRAMS

The programs in this book are used as illustrations for techniques and
ideas. You will gain a lot of knowledge if you type in the programs
yourself. But if you don’t want to tire your fingers, send $9.95 to:

Educational Software, inc.
4565 Cherryvale Ave.
Soquel, CA 95073

A BONUS!

If you discover a new, unpublished use for one of the memory
locations send it to Educational Software. In return, we’ll send you some
software, free.

SOURCES

A few of the program examples in the Master Memory Map come
from other sources. The source is identified in the text by using these
symbols.

Cz: COMMODORE 64 PROGRAMMER’S REFERENCE
GUIDE, Commodore Business Machines, Inc., Computer Systems
Division, 487 Devon Park Drive, Wayne, PA 19087.

' C!: COMPUTE! Magazines, Copyright 1982, Small System Service,
Inc., Reprinted by permission from COMPUTE! Magazine, P.O. Box
5406, Greensboro NC 25403, 12 Issue, Subscription $20.00.

GLOSSARY

ASCIL: The American Standard Code for Information Interchange.
This is one standard for assigning numbers to the letters and
characters on the keyboard. Commodore computers do not follow
a true ASCII (pronounced ‘ASK KEY’) but have their own code
instead.

Accumulator: The results of logic and arithmetic operations are stored
here temporarily. It acts as a busy bus stop, nobody stays here long!

Address: The number of a given location. It’s just like a street address.

Attack: The rate a note or sound changes from ‘off’ to its highest
volume.

Attack —

Baud: This is the rate of transmittion of information conveyed over a
line . This rate is determined by the bits per second that are being
transfered. You encounter this term if you are using a modem or
some device that requires special interfacing (RS-232).

Bit: The smallest piece of information the computer can handle. There
are eight bits in a byte.

Buffer: A storage place. For example, the keyboard buffer stores your
keystrokes and allows you to type faster. The information in a
buffer eventually goes somewhere else to be acted upon.

Bus: A bus is a system of electrical lines shared by all devices that are
connected to it. This is a convenient way for these devices to share
addressing and data. It works just like a party line telephone.

Decay: A musical term meaning the rate of change from the highest
level to the sustaining level of sound.

<+— Decay

Default: The beginning value of a memory location especially when the
power is turned on or other operations are done.

Disable: Tumn off. By disabling the RUN/STOP key, you can prevent
anyone from accidentally stopping your program.

Enable: To turn on; the opposite of disable.

Flag: A signal that something has happened. Flags can be used in your
own programs. For example:

If A$ = “ouch” then B=1
B is the flag in that statement.
Floating Point: Arithmetic operations using decimal numbers.

Immediate Mode: Using the computer without running a program.
For example:

10 PRINT 3 + 2
is a program and must be run to get an answer.
PRINT 3 + 2
will answer “5” when you press RETURN.

Jump: To go from one location to another. In BASIC, the equivalent
terms are GOTO and GOSUB.

KERNAL: Thisis Commodore’s word for a series of machine language
subroutines that operate the computer. See the Appendix for more
information.

Nybble: Pronounced ‘nibble’. A nybble is half a byte. Really. The low
nybble is composed of bits O to 3. The high nybble has bits 4 - 7.

Operating System: Sometimes this is referred to as the OS. Part of this
is the KERNAL described above. Its job is to make the computer
run.

Page: A page is 256 bytes of memory. The computer often keeps track
of different blocks of memory in terms of pages since it is easier for
the computer to store.

Pointer: It does just what it says, it acts as a signpost, telling the
computer where to look for information.

RAM: Random Access Memory. This type of memory can be easily
changed. Your programs are stored in RAM, and when the
computer is turned off any information in RAM is lost.

ROM: Read Only Memory. This type of memory does not change when
the power to the computer is turned off. Examples of ROM
memory include BASIC and the KERNAL.

Register: Another name for memory location. Registers can be more
than one byte long.

Release: A musical term describing the rate of fall from the sustain level
to zero volume.

<— Release

Reserved Word: Letters that can’t be part of your program. Examples
of reserved words are the status word, ST, and the time words, T
and TIS$. To save yourself from trouble, don’t use any variables in
your programs that have the same starting letters of any BASIC
command or have BASIC words in them.

Sustain: Another musical term used with the sound capabilities of the
computer. This extends the sound, like the pedals of a piano.

Waveform: This term is a description of the type of sound produced.
The computer has four different waveforms; triangle, sawtooth,
pulse and noise. Each type produces a different kind of sound.

Vector: This is another kind of pointer. It refers to the starting address of
a routine. The computer needs to know where to look for things.

5

This part is for those who have yet to learn how to use a memory map.
Basically, a memory map is a list of valuable locations within the
computer (in this case a COMMODORE 64), that you can directly use
for various purposes. These locations are called bytes (memory loca-
tions) of memory at a specific place. With 64K of memory, there are
64*1024 memory locations that you can work with. Although some of
these bytes are used for the computer’s Operating System, most of them
are blank for you to use in your programs. This manual will tell you about
the ones that you can do something with.

For example, you can quickly look down this list to find that location
650 controls the repeating of certain keys, like the space bar. By
following the included hints, you can change the “normal” value in that
location, so that when you pressany key it will repeat as long as you hold
it down. Please note that any of the changes that you make are only
temporary and will go away when the computer is turned off.

Now to explain how to make changes from BASIC. Say you look
down the list and decide to change location 650 (all numbers are decimal
unless marked with a $ symbol, which denotes a HEX-adecimal
number, or in a column marked “hex”). 650 is called RPTFLG by
Commodore. Its function is to decide which keys on the keyboard to
repeat. So, if you would like all the keys to repeat as long as you hold the
key down, you simply look up the correct value to POKE into location
650.

In this example, the memory map says to use the number 255 torepeat
all keys. The BASIC instruction to put a number into memory is called
«“POKE”. After all this long-winded explanation, you can now see how

simple it is to make this change:

POKE 650,255

— HINT —

Always use the decimal numbers with a POKE statement. This means
that sometimes you will have to convert between binary, hexadecimal
and decimal. Also, any one memory location can only hold a number up
to 255. Why?...remember that the COMMODORE uses eight bits per
word (memory location), and eight bits in binary counts from 0 to 255
(internally, the machine uses binary). You may want to study the next
section of the manual, *Bytes and Bits” to learn about binary. Because of
this limitation, sometimes you must POKE numbers into two locations
in a row.

For example, look at memory locations 643 & 644 which are called
MEMSIZ. These locations hold a number that corresponds to the top of
your available memory (called RAM - Random Access Memory). Since
the top of memory can be up to 40960, a number well above the limit of
256 for any one memory location, the computer will need two locations
to store the value. Yes, I know 256 for the first location plus 256 for the
second doesn’t seem to add up to a large enough number to hold 64K, but
the computer takes each number in the second location and multiplies it
by 256. Examples:

11 stored in the low byte
+1 stored in the high byte
267

The computer “sees” 256*1+11 which equals 267.

Another example:

121 in the low byte
47 in the high byte
1913

Since 7*¥256 +121=1913.

Sometimes it is desirable to fool the COMMODORE 64 into thinking
that the top of memory is lower than it actually is, perhaps to keep it from
using the last thousand bytes of memory, thus reserving them for Sprites.
You do the same type of POKE here as in the first example, except that
you have to do it twice; once for the “LOW”’ part of the number and once
for the “HIGH” part.

I said the LOW part of the number is placed in the first memory
location and the HIGH part is next. Although it seems backwards, this is
really not hard to understand. The COMMODORE (and most other
micro-computers) store multiple part numbers this way. Occasionally
this rule is broken, so please don’t call me up if you find an exception.

Here’s what you do. We want to change the value of MEMSIZ to be
1K less than it currently is.

1) Find current value...

10 A = PEEK(643)+PEEK(644) * 256
LOW Part HIGH Part

This number will be 40960, which is the value of MEMSIZ, when
the 64 is turned on.

2) Subtract 1K from this value...
20 A= A—(1 * 1024)
Remember that one K is actually 1024 bytes.
(You don’t have to use 1, you can can change the size by any
number.)

3) Break the new value up into LOW and HIGH parts...

30 B= INT(A/256). C= A—(B * 256)
B would = 156, C would = 0

What this does is make C the LOW part of the number and B the
HIGH part.

EX: 40960—1K = 39936

Line 30, when run, will give you 156 for the HIGH part and O for the
LOW part.

4) POKE these values into memory...
40 POKE 643,C: POKE 644,B (#’s in decimal!!)

EX: POKE 643,0:POKE 644,156

! FINAL WORDS OF WISDOM !!

1) Feel free to POKE and PEEK all you want, trying out ideas or
testing the effects mentioned in the Master Memory Map. The
explanations are only the most basic part of how to do the various
effects possible on the COMMODORE. Watch for EDUCA-
TIONAL SOFTWARE’S series of TRICKY TUTORIALS™
that will take you step by step through Sprites, Page Flipping,
Sound, Animation and other uses of the computer. These are the
techniques that the best programs use, and all of our Tutorials are
done in BASIC, although we do sometimes include a machine
language subroutine to offer you some advantage like speed.

2) Remember that two numbers are required to tell the computer the
value for some locations, and these are stored LOW part first,
HIGH part second. This is opposite of what you might think.

3) All of the memory locations are here, but many are for advanced
users only. Don’t feel bad if you have no idea what they are for. The
idea is to experiment and learn.

4) You can usually press Run/Stop and Restore if trouble occurs.
This will restore the original (default) values of many locations.

5) Some locations in the Master Memory Map are used to read from
only; that is, you can PEEK to see what is there, but you can’t
POKE your own number in. This is because part of memory is a
type called “ROM” which means “READ ONLY MEMORY”.
This type is permanent and can’t be changed by POKEing, but
Commodore has thoughtfully provided a way for you to put a copy
of the ROM into memory so you can change it if you wish.

Go back and re-read the last section at least a few hundred times.
There are only four lines in the program that both read the old value of
MEMSIZ and store a new value. These lines don’t have to be part of a
program. You could enter them directly.

BYTES and BITS

To PEEK & POKE you need to understand what a byte is and how it
is structured. It isn’t too hard to understand - and you can use the Master
Memory Map without learning too much about them - but the more you
know about Bytes and Bits the more you’ll learn about controlling your
Commodore.

A BYTE is really not complicated at all. A BYTE is simply a group of
eight BITS. When eight BITS are structured into a BYTE then each of
those BITS have special significance. You look puzzled! What, you say,
is a BIT?

A BIT is the smallest piece of information a computer can deal with. In
fact, the computer only deals with BITs at the most fundamental level. It
may be helpful to imagine the microprocessor as a bus station. This bus
station has only one single lane road attached to it. That means a bus can
only travel in one direction at a time as there is not enough room for two
busses to pass each other. Therefore, a bus may either be arriving at the
station or departing. The microprocessor, or bus station, can schedule its
bus with a signal light that says “I AM ACCEPTING ARRIVALS” or
“] AM SENDING DEPARTURES”.

In fact, in real computer hardware architecture, the wires that carry
information to and from a microprocessor are called the DATA
" BUSSES. We don’t need eight separate INPUT and eight separate
OUTPUT wires because, like the single lane road connected to the bus
station, the wires are bi-directional, that is, information can either be
arriving (INPUT) or departing (OUTPUT). The microprocessor also
has a signal of its own that determines whether it will receive (INPUT) or
send (OUTPUT) information.

WHO’S RIDING THE BUS?

Let’s take a closer look at that bus. It is known as the BYTE express,
has eight seats, and always carries eight passengers. Those passengers
are little messengers known as BITs, and, as a group, they are known as a
BYTE. These messengers, or BITs, are rather moody. They are either
turned “ON” or they are turned “OFF”. Thatis called BINARY as they
are BI-STATE signals, ON being a ““1”’ state or OFF being a “0”’ state.
Their vocabulary is just as limited...the only thing they are willing to tell
you s their mood. Now how do we get any meaningful information out of
a group of eight little monsters standing in front of us, each screaming
“ON” or “OFF” at one time?

Well, when the bus arrives, we could have the whole BYTE stand in
front of us and count everyone who is turned ‘““ON”. That would give us
the capability of counting to eight. Seems pretty limited, doesn’t it?
Hmmm, the group really needs a leader. That leader will be the first BIT
on the left. We’ll call that BIT the Most Significant Bit, or the MSB. The
last BIT on the right will be the Least Significant Bit, or LSB. Terrific!
Now that we have a group leader and group follower, then all the BITs
should have a rank.

Handing out ranks is a serious matter and much thought should be
given to it. We can start with the LSB and assign that BIT the rank of
“1”, since it is the Least Significant Bit. We can be easy on everyone if

11

we just double that rank for the next BIT in line. So, why not just keep
doubling the rank for the next BIT in line and so on until we get to the
MSB or Most Significant Bit. Now out BY TE looks something like this:

BYTE
MSB LSB

BIT U 6 S 4 3 2 1 0

Ran [128] [o4] [32] [us] [8] [4]]2][1]

MESSAGES WITH MEANING!

What have we gained? More than meets the eye! When the BYTE gets
off the BYTE express and each BIT starts telling us what their mood for
the day is, we can make a different and more meaningful interpretation
out of the ignorant little beasts. If everyone is turned “OFF”’ except the
fourth BIT from the right we can check the rank of that BIT and find it is
eight (8). Unknown to the BITs, they have brought us a message and the
message is “8”.

Computers are very efficient and do not like to waste information,
therefore, computer related numbers usually start at BASE ZERO (0)
since zero is unique. We usually like to start counting with one (1) for the
convenience of our thinking process. That way, the number we arrive at
when we have counted the last item actually represents the number of
items we counted. Normally, we would count the BITs as one (1)
through eight (8). The computer thinks a little more efficiently than
mortals and sees BITs zero through seven as representing eight (8)
individual BITs.

VALUE 128 64 32 16

[e 2}
»
(38
—

//% =8

BIT 7 6 5 4 3 2 1 0

If you SET or turn “ON” only the fourth BIT (BIT #3) from the right
you will observe a value of eight (8) in the value box. That was the
message we received!

Aha, we now want the BITs to get on the bus and carry a message back
to the sender. We want them to tell the sender “9”. Oops, a small

12

