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PREFACE

Engineers from all disciplines must be able to conceptualize, design, and proto-
type systems that depend on computers as operational components. The software
in these computers is real-time, in the sense that its operation must be synchronized
with events occurring in the physical system and with time.

Performance, reliability, and cost are products of the integral design of a
machine and its control intelligence. Part count reductions, self-diagnostic ability,
adaptation to changing environments, faster operation—these are all benefits of
appropriate replacement of hardware with software. Our hypothesis is that all
engineers need to know the fundamentals of intergrated real-time software,
whether they are designing, supervising design, purchasing, or using sophisticated
engineering systems.

Real-time software functions in an environment in which the various system
components operate asynchronously. The events associated with changes in
software state, changes in state of the physical system, and time, do not repeat in a
predictable way. This environment puts a premium on good design practice, since
system “bugs” cannot be reproduced at will for diagnosis as they usually can in
purely numerical programs. Furthermore, the asynchronous nature of the system
increases the likelihood that a system will contain very low probability bugs, bugs
that don’t show up in laboratory testing, but could appear in production versions
of the system long after its initial release.

Our approach to real-time software emphasizes design practices that result in
fewer bugs in the first place: modular programs, data hiding, mutual exclusion,
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task isolation, simulation. The text uses a graduated approach, starting with strictly
synchronous software (although the complete system remains asynchronous), add-
ing interrupts, simple scheduling, and then event-driven scheduling.

All of the text material is illustrated with extensive examples, with complete
code in C included. The text presents solutions in a language-independent form,
with C-specific discussion of the examples following the text material in each
chapter.

Motor-driven systems are used as the physical example throughout the text.
Motors are ubiquitous in the engineering world, and they also can be small, inex-
pensive, and safe—ideal properties for use in a teaching laboratory.

The material in this text is the subject of a one-semester graduate course in
the Mechanical Engineering Department, University of California at Berkeley. It is
supplemented with a Crlanguage tutorial. The course has no formal prerequisites,
and is successfully completed by students from Mechanical Engineering as well as
other engineering departments. In particular, students are not expected to have
any prior C or real-time experience.

The course is heavily laboratory-based. In the early part of the course, exam-
ple programs from the text are used as the basis for lab exercises. The students
are asked to test, modify, or enhance these programs. This provides a functioning
starting point for students, and helps to minimize the frustration commonly associ-
ated with development of real-time software from scratch. It also helps teach an
incremental style of design—test, enhance the design, retest, etc.—which we feel
allows students to build confidence in their ability to get a job done.

The text can be used even in situations in which an actual lab is not available,
since the use of simulations is encouraged throughout. Simulations are carried all
the way to real-time operation, with the physical system existing as a simulation in
a separate task module.

The book is also intended for use as a professional self-study text. In that
case, some prior study in C would be useful. Because the example code includes
simulation-based programs, completion of the text does not require an extensive
laboratory.
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CHAPTER 1

SYNCHRONOUS
PROGRAMMING

Real-time computer systems must interact with the outside world on terms that are
dictated by events taking place there. The computations that are done in response
to those events must not only produce the correct results, but they must also pro-
duce those results at the right time. Unlike a real-time system, the success of a
scientific or engineering computation is rarely related to when the result appears,
although the user’s patience and total computing expenses are related to the
computation time. A further distinction in real-time computing is that the total
computing environment consists of many semi-independent tasks that must be syn-
chronized properly.

Many varieties of computers and systems qualify as “real-time.” In this text,
our concerns will focus on engineering systems in which there are interactions
between a computer and some form of physical system. There are also often
interactions with an operator. The physical system usually contains several meas-
uring devices, which the computer must interrogate to get information, and
several actuators, which receive signals from the computer to control their actions.
Some systems have only one or the other of sensors or actuators, while most have
both (Fig. 1.1). The computer (or computers) used can range from thumbnail
size to room size (microprocessors to superminis), but the basic techniques for
designing effective real-time systems are the same: careful conceptual design, sys-
tematic implementation, exhaustive validation, and thoughtful choice of software
and hardware development tools. A major focus here will be on the use of high-
level computing languages for implementation of real-time systems.
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Figure 1.1

1.1 MOTOR SPEED CONTROL

We have chosen the control of electric motors as our theme. Motors are widely
used and appear in so many different kinds of engineering systems that they cross
virtually all disciplinary boundaries. When different methods of actuation and
speed and position measurement are considered, motors also offer examples of
situations that are typical of almost any real-time system. Motor systems are also
easy and inexpensive to build in a laboratory, and so offer an excellent learning
environment. On the other hand, the programs developed in the course of
exploring the theme of motor control are generic to other control problems, and
could be applied to many of them with little or no change.

A simple motor control system is shown schcmali(‘ally in Fig. 1.2. From the
point of view of real-time system design, the simplicity of the job, even for this very
simplc—looking physical system, will depend on how much we demand of the com-
puter. If the analog-to-digital (A/D) and digital-to-analog (D/A) converters can
operate with little or no intervention from the computer, if the only interaction
with the operator takes place at the beginning and end of an experiment, and if
the algorithm chosen for computing the output signal to the power amplifier as a
function of the measured motor speed depends only on the most recent measure-
ment, then the real-time system will also be quite simple. With these restrictions,
we can embark on our first example.

1.2 THE CONTROL ALGORITHM

At the heart of most real-time computation systems there are usually some key cal-
culations. This could be a trend analysis of incoming data, spectral analysis for
recognizing changes in system characteristics, generation of waveforms for system
excitation, or, in this case, computation of the actuation signal on the basis of the
measured motor velocity. Although these calculations are absolutely critical to
proper system operation, the actual amount of program code devoted to them is
usually embarrassingly small!

Control of motor speed is accomplished by increasing the voltage to the
power amplifier if the speed is too low, and decreasing it if the speed is too high.
A simple rule for doing this is to make the change in actuation voltage propi)r—
tional to the velocity error, the difference between the actual velocity and the



