DISK

DAVID M. AUSLANDER ~ ™ewoeo.
CHENG H.THAM |

- REALTIME_
SOFTWARE
FOR CONTROL

50% Duty Cycle

PROGRAM EXAMPLES IN C

9064405

REAL-TIME SOFTWARE

FOR CONTROL:
PROGRAM EXAMPLES
INC

.

/ S

David M. Auslander

University of California, Berkeley

Cheng H. Tham

Sherpa Corporation

.

E9064405

Prentice Hall
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Auslander, David M.

Real time software for control : program examples in C / David M.

Auslander, Cheng H. Tham.
p. cm.

Includes bibliographical references.

ISBN 0-13-762824-2

1. Real-time control--Computer programs. 2. C (Computer program
language) I. Tham, Cheng H. (Cheng Haam) II. Title.
TJ217.7.A87 1989
629.8'955133--dc20 89-36478

CIP

Editorial/production supervision
and interior design: Jacqueline A. Jeglinski
Cover design: Ben Santora
Manufacturing buyer: Denise Duggan/Mary Ann Gloviande

© 1990 by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/(]ollcgc Marketing

Prentice-Hall, Inc.

College Technical and Reference Division
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 38 9 1

ISBN 0-13-7k282Yy-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Led., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

REAL-TIME SOFTWARE
FOR CONTROL:
PROGRAM EXAMPLES
INC

PREFACE

Engineers from all disciplines must be able to conceptualize, design, and proto-
type systems that depend on computers as operational components. The software
in these computers is real-time, in the sense that its operation must be synchronized
with events occurring in the physical system and with time.

Performance, reliability, and cost are products of the integral design of a
machine and its control intelligence. Part count reductions, self-diagnostic ability,
adaptation to changing environments, faster operation—these are all benefits of
appropriate replacement of hardware with software. Our hypothesis is that all
engineers need to know the fundamentals of intergrated real-time software,
whether they are designing, supervising design, purchasing, or using sophisticated
engineering systems.

Real-time software functions in an environment in which the various system
components operate asynchronously. The events associated with changes in
software state, changes in state of the physical system, and time, do not repeat in a
predictable way. This environment puts a premium on good design practice, since
system “bugs” cannot be reproduced at will for diagnosis as they usually can in
purely numerical programs. Furthermore, the asynchronous nature of the system
increases the likelihood that a system will contain very low probability bugs, bugs
that don’t show up in laboratory testing, but could appear in production versions
of the system long after its initial release.

Our approach to real-time software emphasizes design practices that result in
fewer bugs in the first place: modular programs, data hiding, mutual exclusion,

Xiii

task isolation, simulation. The text uses a graduated approach, starting with strictly
synchronous software (although the complete system remains asynchronous), add-
ing interrupts, simple scheduling, and then event-driven scheduling.

All of the text material is illustrated with extensive examples, with complete
code in C included. The text presents solutions in a language-independent form,
with C-specific discussion of the examples following the text material in each
chapter.

Motor-driven systems are used as the physical example throughout the text.
Motors are ubiquitous in the engineering world, and they also can be small, inex-
pensive, and safe—ideal properties for use in a teaching laboratory.

The material in this text is the subject of a one-semester graduate course in
the Mechanical Engineering Department, University of California at Berkeley. It is
supplemented with a Crlanguage tutorial. The course has no formal prerequisites,
and is successfully completed by students from Mechanical Engineering as well as
other engineering departments. In particular, students are not expected to have
any prior C or real-time experience.

The course is heavily laboratory-based. In the early part of the course, exam-
ple programs from the text are used as the basis for lab exercises. The students
are asked to test, modify, or enhance these programs. This provides a functioning
starting point for students, and helps to minimize the frustration commonly associ-
ated with development of real-time software from scratch. It also helps teach an
incremental style of design—test, enhance the design, retest, etc.—which we feel
allows students to build confidence in their ability to get a job done.

The text can be used even in situations in which an actual lab is not available,
since the use of simulations is encouraged throughout. Simulations are carried all
the way to real-time operation, with the physical system existing as a simulation in
a separate task module.

The book is also intended for use as a professional self-study text. In that
case, some prior study in C would be useful. Because the example code includes
simulation-based programs, completion of the text does not require an extensive
laboratory.

REAL-TIME SOFTWARE
FOR CONTROL:
PROGRAM EXAMPLES
INC

[I

_ _

CONTENTS

CHAPTER 1

[QT G G G Y
GOH WN =

- ek

= oo~

o

PREFACE xiii

SYNCHRONOUS PROGRAMMING 1

MOTOR SPEED CONTROL 2

THE CONTROL ALGORITHM 2

PROGRAM STRUCTURE 3

DEBUGGING: SIMULATING REAL-TIME 6
INTEGER AND FLOATING POINT: REAL-TIME
CONSIDERATIONS 8

RUNNING IN REAL-TIME 11

INTRODUCTION TO EXAMPLE PROGRAMS 13

ABOUT EXAMPLE PROGRAMS 13
THE C LANGUAGE STANDARD 13
COMPILERS 14

PROGRAMMING PRACTICES 14
1.10.1 FILE MODULES 14
1.10.2 THE ENVIRONMENT FILE—ENVIR.H 16
1.10.3 INPUT AND OUTPUT PORTS—INOUT.H 17

vi

1.11
1.12
1.13

1.16

CHAPTER 2

2.1
2.2
23
2.4
25
2.6
2.7

2.8
2.9

2.10

2.1

CHAPTER 3

3.1
3.2
3.3
3.4

CONTENTS

1.10.4 FLOATS AND DOUBLES 17
SYNCHRONOUS PROGRAMMING EXAMPLES 18

INTRODUCTION 18
MAIN MODULE—MAINO.C 19
CONTROL MODULE—CNTR10.C 21
1.13.1 THE CONTROL LoOP 21
1.13.2 PROGRAMMING NOTES 21
SIMULATION MODULE—RTSIMO0.C 22
METRABYTE DASH-8 A/D DRIVER—DASHS.C 24
1.15.1 PRINCIPLES OF OPERATION 24
1.15.2 INITIALIZATION 25
1.15.3 MORE BIT FIDDLING 25

METRABYTE DAC-02 D/A DRIVER—DAC2.C 26
TIME 41
PROPORTIONAL PLUS INTEGRAL (Pl) CONTROL 11

CLOCKS 43

CLOCK IMPLEMENTATION 43

USING TIME IN CONTROL—PARALLEL PROCESSES 45
ACHIEVING PARALLELISM 46

INTERRUPT HARDWARE 47

SIGNAL (XIGNAL): A SOFTWARE INTERRUPT
CONTROLLER 49

THE TIME ELEMENT 50

INTRODUCTION 50
SIMPLE PI CONTROL 51
2.9.1 TIMER SIMULATION 51
REAL-TIME 52
2.10.1 USING FTIME() 52
2.10.2 USING THE XIGNAL PACKAGE 52
2.10.3 UsING TIMER INTERRUPTS DIRECTLY 53

IN CONCLUSION 55
ASYNCHRONOUS SIGNAL PROCESSING 84
PULSE-WIDTH MODULATION 84

PROGRAMMING FOR PULSE-WIDTH MODULATION 85
PULSE-FRENQUENCY MODULATION (PFM) 88
UNIDIRECTIONAL VELOCITY MEASUREMENT 89

CONTENTS vii

3.5 SOFTWARE IMPLEMENTATION OF MULTIPLE
TIMERS 91

3.6 POSITION CONTROL 93

3.7 MEASURING POSITION 95

ASYNCHRONOUS PROGRAMMING EXAMPLES 98

3.8 INTRODUCTION 98
3.9 PROGRAM TERMINATION 99
3.10 TWO SOFTWARE TIMERS 100
3.10.1 INITIALIZATION 102
3.10.2 TIMER INTERRUPT SERVICE ROUTINE 102
3.11 THE PARALLEL PRINTER PORT 103
3.12 PULSE-WIDTH MODULATION 105
3.12.1 INITIALIZATION 105
3.12.2 PULSE-WIDTH MODULATION 105
3.12.3 PuULSE FREQUENCY 105
3.12.4 DuTy CYCLE 106
3.13 PULSE-FREQUENCY MODULATION 106
3.13.1 INITIALIZATION 107
3.13.2 PULSE INPUT 107
3.13.3 CALCULATING VELOCITY 107
3.13.4 ADAPTIVE GROUP SIZE 108
3.14 QUADRATURE DECODING 109
3.14.1 INITIALIZATION 110
3.14.2 POSITION DECODING 110
3.14.3 CALCULATING VELOCITY 111
3.15 MULTIPLE TIMERS IN SOFTWARE 112
3.15.1 INITIALIZATION 112
3.15.2 TIMER ALLOCATION 113
3.15.3 CHRONOS 113
3.15.4 MULTI-TASKING USING ONLY CHRONOS 115
3.16 CASCADE CONTROL 115

CHAPTER 4 DATA STRUCTURES 151

4.1 DATA ORGANIZATIONS 151

4.2 POINTER VARIABLES 153

4.3 POINTER ARITHMETIC 154

4.4 LINKED LISTS 155

4.5 A SIMPLE INTERPRETER FOR SETPOINT
CALCULATION 157

4.6 DYNAMICS MEMORY ALLOCATION 159

4.7 STORAGE MANAGEMENT 161

viii CONTENTS

4.8 CONTROL COMMAND LANGUAGE 162
DATA STRUCTURE EXAMPLES 164

4.9 INTRODUCTION 164
4.10 REVIEW OF DATA STRUCTURES AND TYPES IN C 164
4.11 CASCADE CONTROL REVISTED 166
4.11.1 CONTROL LOOP DESCRIPTORS 166
4.11.2 INITIALIZATION 168
4.11.3 CONTROL 169
4.12 LINKED LISTS IN CASCADE CONTROL 170
4.13 COMMAND INTERPRETATION USING TABLES 172
4.13.1 INTERPRETATION 173
4.13.2 ENDOF TABLE 175
4.14 SIMPLE INPUT CHECKING 175

CHAPTERS MULTIPLE INDEPENDENT PROCESSES 193

5.1 DATA STRUCTURE FOR MULTIPLE MOTOR
CONTROL 193

5.2 ALGORITHM IMPLEMENTATION: PRECISION 194

5.3 TASK SCHEDULING 198

5.4 BACKGROUND SCHEDULING 200

5.5 BACKGROUND SCHEDULING CAVEATS 202

5.6 SIMULATING REAL-TIME 204

MULTIPLE INDEPENDENT PROCESSES
EXAMPLES 206

5.7 INTRODUCTION 206
5.8 EXPLICIT BACKGROUND SCHEDULER 207
5.8.1 MAIN MODULE 207
5.8.2 CONTROL MODULE 208
5.8.2.1 INnTIALIZATION 208
5.8.2.2 SCHEDULING 209
5.8.3 SIMULATION MODULE 210
5.9 GENERAL BACKGROUND SCHEDULER 211
5.9.0.1 S7ART 212
5.9.0.2 ScHEDULING 212

CHAPTER6 THE OPERATOR'S CONSOLE 240

6.1 CONSOLE DEVICES 241
6.2 THE SERIAL INTERFACE 243

CONTENTS

6.3 ASYNCHRONOUS (INTERRUPT) PROCESSING 244
6.4 ECHOES, SPECIAL CHARACTERS, AND
HANDSHAKING 246
6.4.1 IMPLEMENTING THE ECHO 247
6.4.2 HANDSHAKING/BUFFER FULL 248
6.4.3 IMPLEMENTATION WITH BUFFER CONTROL 248
6.5 MESSAGE ENCODING/DECODING 252
6.6 OPERATOR FUNCTIONS FOR MULTI-MOTOR
CONTROL 253
6.7 FORMATTED SCREEN OPERATOR INTERFACES 256
6.7.1 LABELLED VALUES 256
6.7.2 ACTION INPUTS 257
6.7.3 SCREEN MANAGEMENT PROGRAM 257
6.7.4 SCREEN BACKGROUND 259
6.7.5 NESTED SCREENS 259

OPERATOR CONSOLE EXAMPLES 260

6.8 INTRODUCTION 260
6.9 APPLICATION INTERFACE LAYER 261
6.9.1 BUFFERS 262
6.9.2 TERMINAL CONTROL 263
6.9.2.1 KEYBOARD INPUT 264
6.9.2.2 SCREEN OUTPUT 265
6.9.2.3 TRANSMISSION LINE ERROR 265
6.9.2.4 OUTPUT BUFFER CONTROL 265
6.10 SERIAL TERMINAL AS CONSOLE 266
6.11 VIDEOQO DISPLAY AND KEYBOARD AS CONSOLE 268
6.11.1 VIDEO DIispLAY OUTPUT 268
6.11.2 KEYBOARD INPUT 268
6.11.3 MISCELLANEOUS ROUTINES 269
6.12 THE DEMONSTRATION PROGRAM 269
6.12.1 INITIALIZATION 270
6.12.2 KeYBOARDS COMMANDS 270
6.12.3 PLANT ROUTINE 270
6.13 CONCLUSIONS 271

OPERATOR CONSOLE EXAMPLES: FORMATTED
SCREEN 272

6.14 INTRODUCTION 272

6.15 FILES 272

6.16 SAMPLE PROBLEM 272

6.17 SCREEN MANAGEMENT FUNCTIONS 273
6.18 MS/PCDOS INTERFACE 273

CHAPTER 7

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

7.11
7.12
713
714
7.15
7.16
717
7.18
7.19
7.20
7.21

CHAPTER 8

8.1

8.2
8.3
8.4
8.5

8.6
8.7
8.8
8.9
8.10

CONTENTS

PRIORITY SCHEDULING 314

FOREGROUND/BACKGROUND 314
BACKGROUND PRIORITIES 315
FOREGROUND SCHEDULING 316
TASK STRUCTURE FOR CONTROL 317
TIME-BASED FIXED-PRIORITY SCHEDULING 320
TASK SUSPENSION 321
STACKS 322
ARGUMENTS AND LOCAL VARIABLES 324
PRIVATE STACKS 326

THE TASK CONTROL BLOCK 326

CONTROL OF A THERMAL SYSTEM 328

INTRODUCTION 328
PROGRAM FILES 328
CONTROL OBJECT 329

THE CONTROLLER 330
“‘PURE” SIMULATION 330
REAL-TIME OPERATION 331
MUTUAL EXCLUSION 332
AUTOMATIC/MANUAL OPERATION 332
OPERATOR INTERFACE 333
DISPLAY FUNCTIONS 334
OPERATOR INPUT 337

EVENT DRIVEN SCHEDULING 362

TASK CONTROL 363

8.1.1 DEFINING EVENTS 363

8.1.2 TASK SUSPENSION 364

8.1.3 SIGNALLING 364

TASK STRUCTURE 365

THE MULTI-MOTOR CONTROL EXAMPLE 366
MULTI-TASKING 367

MUTUAL EXCLUSION 367

EVENT DRIVEN SCHEDULING EXAMPLE 372

INTRODUCTION 372

INITIALIZATION 372

PRIORITIES 373

EVENT HARDWARE INTERFACE 373
GENERATING THE EXAMPLE PROGRAM 373

CONTENTS xi

THE CLOTHO REAL-TIME KERNEL 374

8.11 INTRODUCTION 374
8.12 GETTING STARTED 374
8.13 SCHEDULING 377
8.13.1 FIXED SAMPLE TIME SCHEDULING 377
8.13.2 TIME-SLICE SCHEDULING 379
8.13.2.1 DEmMO1.C 380
8.13.3 EVENT DRIVEN SCHEDULING 380
8.14 SYNCHRONIZATION 382
8.14.1 DISABLING INTERRUPTS 382
8.14.2 TEST AND SET 382
8.14.3 BLOCKING SEMAPHORES 383
8.15 INTER-TASK COMMUNICATION 385
8.16 SYSTEM ORGANIZATION 386
8.16.1 TASK STRUCTURE 386
8.16.2 TASK QUEUES 387
8.16.3 CONTEXT SWITCHING 388
8.16.4 TIME—CHRONOS 389
8.16.5 MEMORY ORGANIZATION 390
8.17 FUNCTION SUMMARIES 390

CHAPTER9 TASK ORGANIZATION AND SCHEDULING FOR A CONTROL SYSTEM 438

9.1 THE PROCESS AND ITS MODEL 439

9.2 CONTROLLER CONFIGURATION 440

9.3 TASK STRUCTURE: NORMAL OPERATION 441
9.4 ALARMS 442

9.5 INTER-TASK COMMUNICATION 443

9.6 SIMULATED REAL-TIME FOR DEBUGGING 445
9.7 TASK SPECIFICATIONS 445

9.8 RESULTS 448

9.9 PARALLEL PROCESSING 451

CLOTHO IMPLEMENTATION OF SCHEDULING FOR A
CONTROL SYSTEM 452

9.10 TIME-TELLING PROGRAM 452
9.11 THE TASKS 454
9.12 THE CONTROL PROGRAM 454
9.12.1 DATA TRANSFER 454
9.12.2 CONTROL TASK STRUCTURE 455
9.12.3 RESOURCE ALLOCATION: DATA LOGGING 455
9.12.4 ALARM 456
9.12.5 TASK SUSPENSION 456

xii CONTENTS

VRTX IMPLEMENTATION OF SCHEDULING FOR A
CONTROL SYSTEM 457

9.13 TIME-TELLING PROGRAM 458

9.14 THE TASKS 459

9.15 THE CONTROL PROGRAM 459
9.15.1 MAILBOXES 460
9.15.2 MESSAGE QUEUES 460
9.15.3 TASK SUSPENSION 461

BIBLIOGRAPHY 485

INDEX 487

CHAPTER 1

SYNCHRONOUS
PROGRAMMING

Real-time computer systems must interact with the outside world on terms that are
dictated by events taking place there. The computations that are done in response
to those events must not only produce the correct results, but they must also pro-
duce those results at the right time. Unlike a real-time system, the success of a
scientific or engineering computation is rarely related to when the result appears,
although the user’s patience and total computing expenses are related to the
computation time. A further distinction in real-time computing is that the total
computing environment consists of many semi-independent tasks that must be syn-
chronized properly.

Many varieties of computers and systems qualify as “real-time.” In this text,
our concerns will focus on engineering systems in which there are interactions
between a computer and some form of physical system. There are also often
interactions with an operator. The physical system usually contains several meas-
uring devices, which the computer must interrogate to get information, and
several actuators, which receive signals from the computer to control their actions.
Some systems have only one or the other of sensors or actuators, while most have
both (Fig. 1.1). The computer (or computers) used can range from thumbnail
size to room size (microprocessors to superminis), but the basic techniques for
designing effective real-time systems are the same: careful conceptual design, sys-
tematic implementation, exhaustive validation, and thoughtful choice of software
and hardware development tools. A major focus here will be on the use of high-
level computing languages for implementation of real-time systems.

2 SYNCHRONOUS PROGRAMMING CHAP. 1

actuati ONns [Engineering |Measurements

System

Computer —

Figure 1.1

1.1 MOTOR SPEED CONTROL

We have chosen the control of electric motors as our theme. Motors are widely
used and appear in so many different kinds of engineering systems that they cross
virtually all disciplinary boundaries. When different methods of actuation and
speed and position measurement are considered, motors also offer examples of
situations that are typical of almost any real-time system. Motor systems are also
easy and inexpensive to build in a laboratory, and so offer an excellent learning
environment. On the other hand, the programs developed in the course of
exploring the theme of motor control are generic to other control problems, and
could be applied to many of them with little or no change.

A simple motor control system is shown schcmali(‘ally in Fig. 1.2. From the
point of view of real-time system design, the simplicity of the job, even for this very
simplc—looking physical system, will depend on how much we demand of the com-
puter. If the analog-to-digital (A/D) and digital-to-analog (D/A) converters can
operate with little or no intervention from the computer, if the only interaction
with the operator takes place at the beginning and end of an experiment, and if
the algorithm chosen for computing the output signal to the power amplifier as a
function of the measured motor speed depends only on the most recent measure-
ment, then the real-time system will also be quite simple. With these restrictions,
we can embark on our first example.

1.2 THE CONTROL ALGORITHM

At the heart of most real-time computation systems there are usually some key cal-
culations. This could be a trend analysis of incoming data, spectral analysis for
recognizing changes in system characteristics, generation of waveforms for system
excitation, or, in this case, computation of the actuation signal on the basis of the
measured motor velocity. Although these calculations are absolutely critical to
proper system operation, the actual amount of program code devoted to them is
usually embarrassingly small!

Control of motor speed is accomplished by increasing the voltage to the
power amplifier if the speed is too low, and decreasing it if the speed is too high.
A simple rule for doing this is to make the change in actuation voltage propi)r—
tional to the velocity error, the difference between the actual velocity and the

