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1

Introduction

In the last years, the part of functional analysis which contributes to the
solution of analytical problems using various techniques from the theory of lo-
cally convex spaces gained a lot of strength from new developments in topics
which are related to category theory and homological algebra. In particular,
progress about the derived projective limit functor (which measures the ob-
stacle against the construction of a global solution of a problem from local
solutions) and the splitting theory for Fréchet and more general spaces (which
is concerned with the existence of solution operators) allowed new applications
for instance to problems about partial differential or convolution operators.

The connection between homological algebra and the theory of locally con-
vex spaces had been established by V.P. Palamodov [50] in 1969. He pointed
out that a number of classical themes from functional analysis can be viewed
as exactness problems in appropriate categories and thus can be investigated
with the aid of derived functors. After developing suitable variants of tools
from category theory he constructed the derivatives of a fairly wide class of
functors and proved concrete representations, characterizations and relations
for several functors acting on the category of locally convex spaces, like the
completion, duality or Hom-functors. A major role in these investigations was
played by the projective limit functor assigning to a countable projective limit
of locally convex spaces its projective limit. A very detailed study of this func-
tor was given by Palamodov in [49].

Starting in the eighties, D. Vogt reinvented and further developed large
parts of these results in [62] (which never had been published) and [61, 63, 64,
65] with a strong emphasis on the functional analytic aspects and avoiding
most of the homological tools. He thus paved the way to many new applica-
tions of functional analytic techniques. Since then, the results (in particular
about the projective limit functor) have been improved to such an extent that
they now constitute a powerful tool for solving analytical problems.

The aims of this treatise are to present these tools in a closed form, and on
the other hand to contribute to the solution of problems which were left open
in Palamodov’s work [50, §12]. We try to balance between the homological
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viewpoint, which often illuminates functional analytic results, and techniques
from the theory of locally convex spaces, which are easier accessible for the
typical reader we have in mind. Therefore we assume a good familiarity with
functional analysis as presented e.g. in the books of Bonet and Pérez-Carreras
[51], Jarchow [36], K&the [39], or Meise and Vogt [45]. Except for some exam-
ples we will not need anything beyond these text books. On the other hand,
no knowledge about homological algebra is presumed. Chapter 2 reviews the
definitions and results (including some ideas for the proofs) that will be used
in the sequel. This is only a small portion of the material presented and needed
in Palamodov’s work. Readers who are interested in the relation of topological
vector spaces to more sophisticated concepts of category theorey may consult
the articles [52, 53] of F. Prosmans.

The key notions in chapter 2 are that of short exact sequences in suitable
categories (for instance, in the category of locally convex spaces

0—x-Ly-*4z_0

is an exact sequence if f is a topological embedding onto the kernel of g which
is a quotient map) and the notion of an additive functor which transforms
an object X into an object F'(X) and a morphism f : X — Y into a mor-
phism F(X) — F(Y). The derived functors are used to measure the lack of
exactness of the complex

0 — F(X) ™ rey) 29 F(z) — 0.

If the values F'(X) are abelian groups or even vector spaces then exactness
of the sequence means that F'(f) is injective, its image is the kernel of F'(g),
and F(g) is surjective. For example, if F is a fixed locally convex space and
F assigns to every locally convex space X the vector space Hom(E, X) of
continuous linear maps and to f : X — Y the map T +— f o T, then the
exactness of the sequence above means that each operator T: £ — Z = Y/X
has a lifting 7 : E — Y.

If the functor F has reasonable properties, one can construct derived func-
tors F'¥ such that every exact sequence

0—X —>Y —>2—00
is transformed into an exact sequence
0 — F(X) — F(Y) — F(Z) — FY(X) — FY(Y) — ...
Then F!(X) = 0 means that
0— F(X) — FY)— F(Z)—0

is always exact.
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Chapter 3 develops the theory of the countable projective limit functor
starting in 3.1 with a “naive” definition of the category of projective spectra
where the objects X = (X,,05,,) consist of linear spaces X, and linear
spectral maps o}, ,, and the morphisms f = (f, : X;, — Y3, )nen consist of
linear maps commuting with the spectral maps. This definition differs from
the one given by Palamodov but has the advantage of being very simple. The
functor Proj (which is also denoted by lim in the literature) then assigns to a
spectrum X its projective limit

X = ProjX = {(wn)nEN € H Xn: QZ+1(IH+1) = xn}
neN

and to a morphism f the linear map Proj(f) : (zn)nen — (fa(zn))nen. If we
consider the “steps” X, as the local parts of X and we are concerned with
the problem whether a given map f* : X — Y is surjective, we can try to
solve the problem locally which requires to find a morphism f with surjective
components f, : X, — Y, such that f* = Proj(f), and then we can hope
to conclude the surjectivity of f* which requires knowledge about Proj'#
where ¥ is the spectrum consisting of the kernels ker f,,.

After presenting the homological features of this functor and comparing
its applicability with Palamodov’s original definition, we give in section 3.2
a variety of characterizations and sufficient conditions for Proj'X = 0. The
unifying theme of all these results is the Mittag-Lefller procedure: one seeks
for corrections in the kernels of the local solutions which force the corrected
solutions to converge to a global solution. If the steps of the spectrum are
Fréchet spaces this idea leads to a characterization of Proj'X = 0 due to
Palamodov. We present three proofs of this which stress different aspects and
suggest variations in several directions. One of the proofs reduces the result
to the classical Schauder lemma which is a version of the open mapping the-
orem. It is this proof which easily generalizes to a theorem of Palamodov and
Retakh [50, 54] about Proj' X = 0 for spectra consisting of (LB)-spaces and
clarifies the role of the two conditions appearing in that theorem: the first is
the continuity and the second is the density required for the Mittag-Leffler
procedure. Knowing this, it is very surprising that in many cases the theorem
remains true without the first assumption. The argument behind is again a
version of the Schauder lemma (even a very simple one). This trick tastes a
bit like lifting oneself by the own bootstraps, but in our case it works. After
discussing this circle of results with an emphasis on spectra consisting of (LS)-
spaces, we consider in section 3.3 topological consequences (like barrelledness
conditions and quasinormability) for a projective limit if some representing
spectrum satisfies Proj'!X = 0, and we solve one of Palamodov’s questions
about Proj considered as a functor with locally convex spaces as values: the
algebraic property Proj'X = 0 does not imply topological exactness in gen-
eral, but it does indeed under an additional assumption which is satisfied in
all situations which appear in analysis.
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Section 3.4 contains some applications of the results obtained in 3.2 and
3.3. We start with some very classical situations like the Mittag-Leffler the-
orem or the surjectivity of d on ¥°°(£2) for open set 2 C C. The tech-
niques based on the projective limit functor nicely separate the two aspects
of the standard proofs into a local and a global part. We also give a proof
of Hérmander’s characterization of surjective partial differential operators on
2'(12) and finally explain results of Braun, Meise, Langenbruch, and Vogt
about partial differential operators on spaces of ultradifferentiable functions.

Encouraged by the results of chapter 3 and the simple observation that
every complete locally convex space is the limit of a projective spectrum of
Banach spaces (which is countable only for Fréchet spaces), we investigate
in chapter 4 the homological behaviour of arbitrary projective limits. In a
different context, this functor has been investigated e.g. by C.U. Jensen [37].
In section 4.1 the algebraic properties are developed similarly as in 3.1 for
the countable case, and we present Mitchell’s [47] generalization of the almost
trivial fact that Projk/'\.’ = 0 for k > 2 and countable spectra: if X consists of
at most R, objects (in our case linear spaces) then Projk/l’ =0fork>n+2.

Before we consider spectra of locally convex spaces, we insert a short sec-
tion about the completion functor with a result of Palamodov and a variant
due to D. Wigner [72] who observed a relation between the completion functor
and the derivatives of the projective limit functor which is presented in 4.3.
Besides this, we prove a generalization of Palamodov’s theorem about reduced
spectra X of Fréchet spaces in the spirit of Mitchell’s result mentioned above:
if X consists of at most R, spaces then Proj*X = 0 holds for k > n + 1.
This seems to be the best possible result: using ideas of Schmerbeck [55],
we show that under the continuum hypothesis (in view of the result above
this set-theoretic assumptions appears naturally) the canonical representing
spectrum of the space ¢ of finite sequences endowed with the strongest lo-
cally convex topology satisfies Proj*X = 0 for k > 2 but Proj' X # 0. The
same holds for all complete separable (DF)-spaces satistying the “dual den-
sity condition” of Bierstedt and Bonet [6] (this is the only place where we use
arguments of [51] which do not belong to the standard material presented in
books about locally convex spaces). These negative results lead to a negative
answer to another of Palamodov’s questions. The essence of chapter 4 is that
the first derived projective limit functor for uncountable spectra hardly van-
ishes (we know essentially only one non-trivial example given in 4.1) and that
this theory is much less suitable for functional analytic applications than in
the countable case.

In chapter 5 the derivatives Ext*(E,-) of the functors Hom(E,-) are in-
troduced, and we explain the connection to lifting, extension, and splitting
properties (it is this last property which is used to find solution operators in
applications). We show that for a Fréchet space X there is a close relation be-
tween Extk(E, X) and Proj*# for a suitable spectrum % and use this to give
a simplified proof of the fact that Ext* (£, X) = 0 for all £ > 1 whenever E is
a complete (DF)-space and X is a Fréchet space and one of them is nuclear
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(this may serve as a guide for the case of two Fréchet spaces considered in 5.2).
The rest of section 5.1 is devoted to a conjecture of Palamodov that under the
same assumptions for £ and X also Extk(X, E) = 0 holds. The only Fréchet
space X for which we can provide some information is X = w = KN. For this
case, we could show jointly with L. Frerick that Ext!(w, E) = 0 for “most”
(DF)-spaces. On the other hand, the negative results of chapter 4 eventually
lead to Ext?(w, ) # 0 at least under the continuum hypothesis.

In 5.2 we present Vogt’s [63] arguments which led to a fairly complete
characterization of Ext!'(E, F) for pairs of Fréchet spaces in [29]. We deduce
from the splitting theorem the most important results about the structure of
nuclear Fréchet spaces (which are due to Vogt [59] and Vogt and Wagner [67])
to compare these with results in 5.3 about splitting in the category of (PLS)-
spaces (in particular, spaces of distributions). We first present very recent
results of P. Domarnski and Vogt [24, 25] about the structure of complemented
subspaces of 2’ (with only minor modifications of their proof, but having the
aesthetical advantage of staying in the category of (PLS)-spaces) and deduce
from this an improvement of their result about Extp, s(E, F) = 0 which shows
that 2’ plays exactly the same role for splitting in the category of (PLS)-
spaces as s does for nuclear Fréchet spaces. This has immediate applications
for the splitting of distributional complexes.

In the sixth chapter about inductive limits we explain the relation to the
projective limit functor which gives several characterizations of acyclic (LF)-
spaces. We provide a very short proof for the completeness of these spaces
and show that for (LF)-spaces acyclicity is equivalent to many regularity con-
ditions of the inductive limit. Because of the close connection to projective
spectra of (LB)-spaces and in view of existing literature about inductive lim-
its (in particular the book of Bonet and Pérez-Carreras [51]) this discussion
is rather short. The rest of the chapter is devoted to questions of Palam-
odov whether inductive limits of complete locally convex spaces are always
complete and regular. We provide positive answers under a very weak extra
assumption.

The final chapter is devoted to the duality functor assigning to a locally
convex space its strong dual and to a continuous linear map the transposed
operator. For an exact sequence

0—x-L vy z_0

of locally convex spaces neither f* nor g* need be open onto its range.

This “lack of openness” is measured by the derived functors D*(X) and
D'(X), respectively. We derive this characterization from the homological def-
initions and provide a quite simple proof of a result due to Palamodov [50],
Merzon [46], and Bonet and S. Dierolf [8] characterizing the quasinormable
Fréchet spaces by D}(X) = 0 and a lifting property for bounded sets, where
again the Schauder lemma plays the main role. Moreover, we show that be-
yond the class of Fréchet spaces quasinormability is not sufficient for vanishing
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of D* nor of D! (we suspect that these answers to further questions of Palam-
odov were probably known to many people for quite a while). We finish with
a surprisingly general positive result about the (topological) exactness of

0—s 25 5 9 L Xt —s g,

where the strict Mackey condition (which is dual to quasinormability) enters
the game, and apply this to projective limits of (LB)-spaces.

As we said above, a good portion of this treatise (in particular chapter
4 and partly 5.1, 6, and 7) is motivated by the list of unsolved problems in
Palamodov’s work. These parts are probably much less important for appli-
cations than other parts. But one should keep in mind that the efforts for
searching counterexamples led to several positive results which allow applica-
tions.

In this work we touch various fields of the theory of locally convex spaces
which have quite a long tradition. It would have been expedient or even nec-
essary to explain the background of many results with much more care. I
refrained from really trying to do so because this would have changed the
character of this work and because there are many people who are much bet-
ter qualified for this.



