Fabrice Kordon
Janos Sztipanovits (Eds.)

Reliable Systems
on Unreliable
Networked Platforms

12th Monterey Workshop 2005
Laguna Beach, CA, USA, September 2005
Revised Selected Papers

LNCS 4322

@ Springer

Fabrice Kordon Janos Sztipanovits (Eds.)

Reliable Systems
on Unreliable
Networked Platforms

12th Monterey Workshop 2005
Laguna Beach, CA, USA, September 22-24, 2005
Revised Selected Papers

@ Springer

Volume Editors

Fabrice Kordon

Université Pierre et Marie Curie

Laboratoire d’Informatique de Paris 6

104 Avenue du Président Kennedy, 75016 Paris, France
E-mail: Fabrice.Kordon@lip6.fr

Janos Sztipanovits

Vanderbilt University

School of Engineering

Nashville, TN 37235-6306, USA

E-mail: janos.sztipanovits @ vanderbilt.edu

Library of Congress Control Number: 2007921535

CR Subject Classification (1998): D.1.3, D.2-3, D.4.5, F3, C.2.1, C.2-4
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-71155-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71155-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12026487 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg .

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4322

Preface

Networked Systems: Realization of Reliable Systems on Unreliable
Networked Platforms

The Monterey Workshops series was initiated in 1993 by David Hislop with the purpose
of exploring the critical problems associated with cost-effective development of high-
quality software systems. During its 12-year history, the Monterey Workshops have
brought together scientists that share a common interest in software development re-
search serving practical advances in next-generation software-intensive systems. Each
year is dedicated to a given topic such as "Software Engineering Tools: Compatibil-
ity and Integration" (Vienna in 2004), "Engineering for Embedded Systems: From Re-
quirements to Implementation" (Chicago in 2003), "Radical Innovations of Software
and Systems Engineering in the Future" (Venice in 2002), "Engineering Automation
for Software Intensive System Integration” (Monterey in 2001), etc.

This 12" Monterey Workshop was held in Laguna Beach, CA during September
22-24,2005.

Context of the 12 Workshop

Networked computing is increasingly becoming the universal integrator for large-scale
systems. In addition, new generations of wireless networked embedded systems rapidly
create new technological environments that imply complex interdependencies amongst
all layers of societal-scale critical infrastructure, such as transportation, energy distri-
bution and telecommunication. This trend makes reliability and safety of networked
computing a crucial issue and a technical precondition for building software-intensive
systems that are robust, fault tolerant, and highly available.

The 12"* Monterey Workshop on "Networked Systems: Realization of Reliable Sys-
tems on Unreliable Networked Platforms" focused on new, promising directions in
achieving high software and system reliability in networked systems.

All presentations at the workshop were by invitation upon the advice of the Program
Committee.

Invited Speakers

Myla Archer Naval Research Lab, USA

Barrett Bryant University of Alabama, Birmingham, USA
David Corman Boeing, St Louis, USA

Nick Dutt UCI, USA

Holger Giese University of Paderborn, Germany

Chris Gill Washington University at St Louis, USA
Helen Gill NSF, USA

Klaus Havelund NASA, USA

Preface

David Hislop
Liviu Iftode

Vana Kalogeraki
Gabor Karsai
Kane Kim
Moon-Hae Kim
Raymond Klefstad
Hermann Kopetz
Fabrice Kordon
Ingolf Krueger
Akos Ledeczi
Edward Lee
Chenyang Lu

Lugqi

Zohar Manna
Oliver Marin
Nenad Medvidovic
Laurent Pautet

Raj Rajkumar
Martin Rinard,
Man-tak Shing
Janos Sztipanovits
Wei-Tek Tsai
Andre Van der Hoek

Nalini Venkatasubramanian

Ben Watson
Albert Wavering
Victor Winter
Feng Zhao

Army Research Office, USA

Rutgers, USA

UC Riverside, USA

Vanderbilt University, USA

University of California at Irvine, USA

Konkuk University, Korea

UCI, USA

Vienna University of Technology, Austria
University of Pierre & Marie Curie, Paris, France
UCSD, USA

Vanderbilt University, USA

UC Berkeley (Keynote Presentation), USA
Washington University, USA

Naval Postgraduate School, USA

Stanford University, USA

University of Pierre & Marie Curie, Paris, France
USC, USA

Télécom Paris, France

Carnegie Mellon University, USA

MIT, USA

Naval Postgraduate School, USA

Vanderbilt University, USA

Arizona State University, USA

UCI, USA

UCI, USA

Lockheed Martin, USA

NIST, USA

University of Nebraska at Omaha, USA
Microsoft Research (Keynote Presentation), USA

Papers included in this volume were selected among the submissions from the work-
shop’s discussions.

Workshop Topics

Software is the new infrastructure of the information age. It is fundamental to economic
success, scientific and technical research and national security. Our current ability to
construct the large and complex software systems demanded for continued economic
progress is inadequate.

The workshop discussed a range of challenges in networked systems that require
further major advances in software and systems technology:

— System Integration and Dynamic Adaptation. A new challenge in networked
systems is that stable application performance needs to be maintained in spite of
the dynamically changing communication and computing platforms. Consequently,
the run-time architecture must include active control mechanisms for adapting the

Preface VII

system/software components to changing conditions. Global system characteristics
need to be achieved by increased run-time use of reflection (systems that
utilize their own models), advanced interface modeling, self-adaptation, and self-
optimization.

— Effects of Dynamic Structure. The structure of networked systems is complex
and highly dynamic. Because systems are formed by ad hoc networks of nodes and
connections, they lack fine-grain determinism for end-to-end behaviors that span
subsystem and network boundaries. In addition, there are end-to-end system qual-
ities such as timeliness and security that can only be evaluated in this dynamically
integrated context.

— Effects of Faults. Faults and disruptions in the underlying communication and
computing infrastructure are the normal events. Since well-understood techniques
for fault-tolerant computing, such as n-modular redundancy, are not applicable in
the dynamically changing networked architecture, new technology is required for
building safe and reliable applications on dynamic, distributed platforms.

- Design for Reliability. Although there are varieties of metrics and established prac-
tices for characterizing the expected failure behavior of a system after it is fielded
and there are established practices for specifying the desired reliability of a sys-
tem, the evaluation of system or software reliability prior to fielding is a significant
problem.

— System Certification. The process for certifying that a system meets specified
reliability goals under the range of conditions expected in actual use currently
involves exhaustive analysis of a system, including its development history and
extensive testing. Current methods do not give systems engineers the confidence
they would like to have in concluding that a system will have particular reliability
characteristics.

— Effects of Scale. Another risk that overlays all proposed solutions is scale. Scale
also addresses both run-time and design-time concerns. Typically, demonstrations
are the convincing drivers to technology adoption. Demonstrations of new tech-
nologies however are usually small-scale, focused efforts. It is an open problem
how to scale up a demonstration that addresses the number of nodes and connec-
tions, and the number of software developers, analysts, and integrators to provide
enough proof to justify technology transition.

These challenges are exaggerated in networked-embedded software systems, where
computation and communication are tightly integrated with physical process.

Approaches

There have been important new developments during the past five years that improve
our chance to meet the new challenges listed above. Contributions at the workshop
identified and discussed research approaches that have direct and immediate relevance
to the new challenges. Listed below are the major themes that came up in many forms
in the presentations and captured in the contributions of these proceedings.

VIII Preface

Model-based software development of network-centric system-of-systems. Model-
based design is rapidly becoming one of the prominent software/system development
paradigms. Models with precisely defined syntax and semantics capture system/soft-
ware invariants that can be formally analyzed and used for predicting/ verifying
system behavior and for generating code. A new challenge in network-centric system-
of-systems is that design invariants need to be maintained actively during run-time due
to the dynamically changing communication and computing platforms. Consequently,
the relationship between design-time modeling and model analysis and run-time behav-
ior needs to be fundamentally different: emphasis needs to be shifted toward correct-
by-construction approaches that can guarantee selected behavioral properties without
the need for system-level verification, and the run-time architecture must include active
control for adapting the system/software to changing conditions. Global system charac-
teristics need to be achieved by increased run-time use of reflection (systems that utilize
their own models), advanced interface modeling, self-adaptation, and self-optimization.

Foundations of future design and programming abstractions. Programming abstrac-
tions have a crucial role in the design of highly concurrent, dynamic, and time-critical
networked systems. Today’s abstractions have been developed for programs with static
structure, closed architectures, and stable computing platforms that are not scalable,
understandable, and analyzable in complex, networked, real-time systems. We need
abstractions that go beyond a narrow view of programming languages to integrate mod-
eling, design, and analysis. They must satisfy the need for blending solid formal founda-
tions with domain-specific expressions and must yield behavior that is predictable and
understandable to system designers, even in the face of uncertain or dynamic system
structure. To accomplish this, they must serve both the modeling role and the design
role, leveraging generators, visual notations, formal semantics, probabilistic modeling,
and yet-to-be-developed techniques for gaining an effective multiplicity of views into a
design. And they must effectively express concurrency, quality-of-service constraints,
and heterogeneity.

Active fault management in network-centric systems. It is important to recognize that
software will never be perfect large-scale, networked systems-of-systems. Software and
platform components may fail at any time. The notion of active fault management ac-
cepts this as a fact and instead of attempting to mask the faults, it focuses on their
containment, mitigation, and management. Active fault management is a novel tech-
nique that is gaining acceptance in complex engineering systems (e.g., aerospace ve-
hicles) and promises reliability through detecting, isolating and recovering from faults
using algorithmic techniques for contingency management. The software engineering
community took notice of these engineering techniques and applies them to software
artifacts. The resulting fault management architectures are layered, as different methods
may be needed on different levels of abstractions in systems and, preferably, they have
to be proactive, so that they detect early precursors to larger problems (e.g., memory
leak in dynamically allocated memory, or memory fragmentation) such that the system
will have sufficient time to take preventive action.

Intelligent, robust middleware. Complexity of large-scale networked systems requires
careful consideration on reusability of code. Middleware technologies offer architec-

Preface X

tural solutions for separating application code from highly reusable components or lay-
ers in software stacks. We need to develop and validate a new generation of intelligent
middleware technologies that can adapt dependably in response to dynamically chang-
ing conditions for the purpose of always utilizing the available computer and network
infrastructure to the highest degree possible in support of system needs. Emerging archi-
tectures, such as service-oriented architecture (SOA), provide focus for this new gen-
eration of middleware research that will ultimately enable software whose functional
and QoS-related properties can be modified either statically, (e.g., to reduce footprint,
leverage capabilities that exist in specific platforms, enable functional subsetting, and
minimize hardware/software infrastructure dependencies) or dynamically (e.g., to op-
timize system responses to changing environments or requirements, such as changing
component interconnections, power-levels, CPU/network bandwidth, latency/jitter, and
dependability needs).

Model-based development of certifiable systems. Systems that are safety certified are
arguably some of the most costly to develop. As a result, software architectures for such
systems are typically very deterministic in order to enable provable mitigation of safety
hazards. The limitations of these approaches are quickly becoming unacceptable due
to the advent of ad-hoc mobile networks requiring a much more dynamic structure and
expected unavailability of certain resources for these safety critical systems. Model-
based development approaches must be applied to enable the development of these
systems within reasonable cost. These approaches should include the development of
modeling syntax and semantics to express safety-critical aspects and perhaps constrain
dynamism, the provision of design-time and run-time analysis that leverages this model
and addresses the concerns of the safety community in the context of a network-centric
system of systems, the automatic generation of artifacts that are proven by analysis
to be safe, and the establishment of trust in such tools and techniques by the safety
community as a whole.

Acknowledgement

We are grateful to the Steering Committee, the Local Organizing Committee and the
invited speakers for making the workshop a success. We gratefully acknowledge spon-
sorship from the Army Research Office (David Hislop) and from the National Science
Foundation (Helen Gill).

January 2007 Fabrice Kordon
Janos Sztipanovits

Organization

Executive Committee

Conference Chair: Kane Kim (University of California, Irvine, USA)
Program Chairs: Fabrice Kordon (Université Pierre & Marie Curie,
France)

Janos Sztipanovits (Vanderbilt University, USA)

Technical Program Committee

Carlos Delgado Kloos University Carlos III of Madrid, Spain

Bertil Folliot University of Pierre & Marie Curie, Paris, France

Tom Henzinger Ecole Polytechnique Federale de Lausanne,
Switzerland

Kane Kim University of California at Irvine, USA

Insup Lee University of Pennsylvania, USA

Chenyang Lu Washington University, USA

Tom Maibaum King’s College, London, UK

Ugo Montanari University of Pisa, Italy

Laurent Pautet Télécom Paris, France

Wolfgang Pree University of Salzburg, Austria

Doug Schmidt Vanderbilt University - ISIS, USA

Lecture Notes in Computer Science

For information about Vols. 1-4302

please contact your bookseller or Springer

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007. (Sublibrary LNAI).

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T.
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal
Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.),
Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVI, 648 pages. 2007.

Vol. 4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIIL, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
XI, 595 pages. 2007.

Vol. 4390: S.0. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
X1, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pernici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIIL XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol. 4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. XI, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. XIV, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: P.P Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstréom, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Plasil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007. .

Vol. 4361: H.J. Hoogeboom, G. P4un, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyén, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. XVIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4345: N. Maglaveras, I. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006. (Sublibrary LNAI).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. X1, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. XI, 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4335: S.A. Brueckner, S. Hassas, M. Jelasity, D.
Yamins (Eds.), Engineering Self-Organising Systems.
XII, 212 pages. 2007. (Sublibrary LNAI).

Vol. 4334: B. Beckert, R. Hihnle, P.H. Schmitt (Eds.),

Verification of Object-Oriented Software. XXIX, 658
pages. 2007. (Sublibrary LNAI).

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNAI).

Vol. 4332: A. Bagchi, V. Atluri (Eds.), Information Sys-
tems Security. XV, 382 pages. 2006.

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXXVII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4328: D. Penkler, M. Reitenspiess, F. Tam (Eds.),
Service Availability. X, 289 pages. 2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies IV. VIII, 257 pages.
2006. (Sublibrary LNAI).

Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-

nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325:J. Cao, I. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4320: R. Gotzhein, R. Reed (Eds.), System Analysis
and Modeling: Language Profiles. X, 229 pages. 2006.

Vol. 4319: L.-W. Chang, W.-N. Lie (Eds.), Advances in
Image and Video Technology. XX VI, 1347 pages. 2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4317: S.K. Madria, K.T. Claypool, R. Kannan, P.
Uppuluri, M.M. Gore (Eds.), Distributed Computing and
Internet Technology. XIX, 466 pages. 2006.

Vol. 4316: M.M. Dalkilic, S. Kim, J. Yang (Eds.), Data
Mining and Bioinformatics. VIII, 197 pages. 2006. (Sub-
library LNBI).

Vol. 4314: C. Freksa, M. Kohlhase, K. Schill (Eds.), KI
2006: Advances in Artificial Intelligence. XII, 458 pages.
2007. (Sublibrary LNAI).

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4310: T. Boyanov, S. Dimova, K. Georgiev, G.
Nikolov (Eds.), Numerical Methods and Applications.
XIII, 715 pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4308: S. Chaudhuri, S.R. Das, H.S. Paul, S. Tirtha-
pura (Eds.), Distributed Computing and Networking.
XIX, 608 pages. 2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.

Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-H. Kang (Eds.), Al 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4303: A. Hoffmann, B.-H. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006. (Sublibrary
LNAI).

Table of Contents

Reinventing Computing for Real Time 1
Edward A. Lee and Yang Zhao

Applying Service-Oriented Development to Complex Systems: BART
Case BINAY s s cwims swims smi6s o is eReme SAHImE EHEEE EHIAE So¥@h Siswb 26
Ingolf H. Kriger, Michael Meisinger, and Massimiliano Menarini

Towards Dynamic Partitioning of Reactive System Behavior: A Train
Controller Case STUAY « s smses smans susme smame sosms sasms §05@5 553553 47
Victor Winter and Deepak Kapur

The GridLite DREAM: Bringing the Grid to Your Pocket 70
Chris A. Mattmann and Nenad Medvidovic

DARX - A Self-healing Framework for Agents 88
Olivier Marin, Marin Bertier, Pierre Sens, Zahia Guessoum, and
Jean-Pierre Briot

Nautical Predictive Routing Protocol (NPRP) for the Dynamic Ad-Hoc
Nautical Network (DANN)t 106
Lugqi, Valdis Berzins, and William H. Roof

A Factory to Design and Build Tailorable and Verifiable Middleware ... 121
Jérome Hugues, Fabrice Kordon, Laurent Pautet, and
Thomas Vergnaud

A Concurrency Abstraction for Reliable Sensor Network Applications... 143
Jdnos Sallai, Miklés Mardti, and Akos Lédeczi

Outdoor Distributed Computing with Split Smart Messages 161
Nishkam Ravi and Liviu Iftode

Towards a Real-Time Coordination Model for Mobile Computing 184
Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman

Dynamic System Reconfiguration Via Service Composition for
Dependable Computingottt 203
W.T. Tsai, Weiwei Song, Yinong Chen, and Ray Paul

A Component-Based Approach for Constructing High-Confidence

Distributed Real-Time and Embedded Systems 225
Shih-Hsi Liu, Barrett R. Bryant, Mikhail Auguston, Jeff Gray,
Rajeev Raje, and Mihran Tuceryan

X1V Table of Contents

Providing Dependable Services with Unreliable SoCs—The DECOS

ApPPLOaCh .« i sem i it dai s R R B SR RIS ES AR PR EEEEF SRS EE

Hermann Kopetz

Modeling and Verification of Cooperative Self-adaptive Mechatronic

SYSUEIMS .« o ottt ettt e e e

Holger Giese

Architectural Design, Behavior Modeling and Run-Time Verification of

Network Embedded Systems iiiiiiiiiiniiinn...

Man-Tak Shing and Doron Drusinsky

Approaches for Inheritance in the TMO Programming Scheme

K.H. (Kane) Kim, Moon-Cheol Kim, and Moon-Hae Kim

Author Index

Reinventing Computing for Real Time

Edward A. Lee and Yang Zhao

University of California, Berkeley
{eal,ellen_zh}@eecs.berkeley.edu

Abstract. This paper studies models of computation, software tech-
niques, and analytical models for distributed timed systems. By “timed
systems” we mean those where timeliness is an essential part of the be-
havior. By “distributed systems” we mean computational systems that
are interconnected on a network. Applications of timed distributed sys-
tems include industrial automation, distributed immersive environments,
advanced instrumentation systems, networked control systems, and many
modern embedded software systems that integrate networking. The
introduction of network time protocols such as NTP (at a coarse granu-
larity) and IEEE 1588 (at a fine granularity) makes possible time coher-
ence that has not traditionally been part of the computational models
in networked systems. The main question we address in this paper is:
Given time synchronization with some known precision, how does this
change how distributed applications are designed and developed? A sec-
ond question we address is: How can time synchronization help with
realizing coordinated real-time events.

1 Introduction

Despite considerable progress in software and hardware techniques, when embed-
ded computing systems absolutely must meet tight timing constraints, many of
the advances in computing become part of the problem, not part of the solution.
Although synchronous digital logic delivers precise timing determinacy, advances
in computer architecture and software have made it difficult or impossible to esti-
mate or predict the execution time of software. Moreover, networking techniques
introduce variability and stochastic behavior, and operating systems rely on best
effort techniques. Worse, programming languages lack time in their semantics,
so timing requirements are only specified indirectly. This paper studies methods
for programming ensembles of networked real-time, embedded computers where
time and concurrency are first-class properties of the program.

This contrasts with established software techniques, where time and concur-
rency are afterthoughts. The prevailing view of real-time appears to have been
established well before embedded computing was common. Wirth reduces real-
time programming to threads with bounds on execution time, arguing that “it is
prudent to extend the conceptual framework of sequential programming as little
as possible and, in particular, to avoid the notion of execution time” [30]. In this
sequential framework, “computation” is accomplished by a terminating sequence
of state transformations. This core abstraction underlies the design of nearly all

F. Kordon and J. Sztipanovits (Eds.): Monterey Workshop 2005, LNCS 4322, pp. 1-25, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 E.A. Lee and Y. Zhao

computers, programming languages, and operating systems in use today. But
unfortunately, this core abstraction does not fit embedded software very well.

This core abstraction fits reasonably well if embedded software is simply “soft-
ware on small computers.” In this view, embedded software differs from other
software only in its resource limitations (small memory, small data word sizes,
and relatively slow clocks). In this view, the “embedded software problem” is an
optimization problem. Solutions emphasize efficiency; engineers write software
at a very low level (in assembly code or C), avoid operating systems with a
rich suite of services, and use specialized computer architectures such as pro-
grammable DSPs and network processors that provide hardware support for
common operations. These solutions have defined the practice of embedded soft-
ware design and development for the last 25 years or so. In an analysis that
remains as valid today as 18 years ago, Stankovic laments the resulting mis-
conceptions that real-time computing “is equivalent to fast computing” or “is
performance engineering” [29)].

Of course, thanks to the semiconductor industry’s ability to follow Moore’s
law, the resource limitations of 25 years ago should have almost entirely evapo-
rated today. Why then has embedded software design and development changed
so little? It may be that extreme competitive pressure in products based on em-
bedded software, such as consumer electronics, rewards only the most efficient
solutions. This argument is questionable, however. There are many examples
where functionality has proven more important than efficiency. It is arguable
that resource limitations are not the only defining factor for embedded software,
and may not even be the principal factor.

Stankovic argues that “the time dimension must be elevated to a central
principle of the system. Time requirements and properties cannot be an af-
terthought” [29]. But in mainstream computing, this has not happened. The
“time dimension,” of course, is inextricably linked to concurrency, and prevail-
ing models of concurrency (threads and message passing) are in fact obstacles
to elevating time to a central principle.

In embedded software, several recent innovations provide unconventional ways
of programming concurrent and/or timed systems. We point to six cases that
define concurrency models, component architectures, and management of time-
critical operations in ways significantly different from prevailing software engi-
neering techniques. The first is nesC with TinyOS [8], which was developed for
programming very small programmable sensor nodes called “motes.” The second
is Click [16], which was created to support the design of software-based network
routers. These first two have an imperative flavor, and components interact prin-
cipally through procedure calls. The third is Simulink with Real-Time Workshop
(from The MathWorks), which was created for embedded control software and
is widely used in the automotive industry. The fourth is SCADE (from Esterel
Technologies, see [2], which was created for safety-critical embedded software
and is used in avionics. These two have a more declarative flavor, where compo-
nents interact principally through messages rather than procedure calls. The fifth
is the family of hardware description languages, including Verilog, VHDL, and

Reinventing Computing for Real Time 3

SystemC, which express vast amounts of concurrency, principally using discrete-
event semantics. The sixth example is LabVIEW, from National Instruments,
a dataflow programming environment with a visual syntax designed for embed-
ded instrumentation applications. The amount and variety of experimentation
with alternative models of computation for embedded systems is yet a further
indication that the prevailing software abstractions are inadequate.

The approach in this paper leverages the concept of actor-oriented design
[20], borrowing ideas from Simulink and from Giotto [12], an experimental real-
time programming language. However, it addresses a number of limitations in
Simulink and Giotto by building similar multitasking implementations from
specifications that combine dataflow modeling and distributed discrete-event
modeling. In discrete-event models, components interact with one another via
events that are placed on a time line. Some level of agreement about time across
distributed components is necessary for this model to have a coherent seman-
tics. While distribution of discrete-event models has long been used to exploit
parallel computing to accelerate execution [31], we are not concerned here with
accelerating execution. The focus is instead on using a model of time as a bind-
ing coordination agent. This steers us away from conservative techniques (like
Chandy and Misra [3]) and optimistic techniques (like Time Warp [15]). One in-
teresting possibility is based on distributed consensus (as in Croquet [28]). In this
paper, we focus on techniques based on distributing discrete-event models, with
functionality specified by dataflow models. Our technique allows out of order
execution without sacrificing determinacy and without requiring backtracking.
The use of dataflow formalisms [26] supports mixing untimed and event-triggered
computation with timed and periodic computation.

2 Embedded Software

There are clues that embedded software differs from other software in quite fun-
damental ways. If we examine carefully why engineers write embedded software
in assembly code or C, we discover that efliciency is not the only concern, and
may not even be the main concern. The reasons may include, for example, the
need to count cycles in a critical inner loop, not to make it fast, but rather to
make it predictable. No widely used programming language integrates a way
to specify timing requirements or constraints. Instead, the abstractions they of-
fer are about scalability (inheritance, dynamic binding, polymorphism, memory
management), and if anything further obscure timing (consider the impact of
garbage collection on timing). Counting cycles, of course, becomes extremely
difficult on modern processor architectures, where memory hierarchy (caches),
dynamic dispatch, and speculative execution make it nearly impossible to tell
how long it will take to execute a particular piece of code. Embedded software
designers may choose alternative processor architectures such as programmable
DSPs not only for efficiency reasons, but also for predictability of timing.
Another reason engineers stick to low-level programming is that embedded soft-
ware has to interact with hardware that is specialized to the application.

