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This text is based on a course, successfully given at the University of New Mexico
for several years, that is an introduction to differential equations for mathematics
majors, engineering students, and majors in the physical sciences. This second edi-
tion has incorporated an additional chapter on partial differential equations and
Fourier series. This material can be used in a more extensive course on differential
equations.

The text differs from more traditional books in that numerical methods are
used from the beginning and throughout as a tool to analyze the qualitative behav-
ior of solutions as well as to approximate them. If one examines textbooks that
have appeared subsequent to the first edition of this book, one sees that this
approach has taken hold. This reflects in part the dramatic availability of personal
computers to the undergraduate population.

Nevertheless we emphasize that the book is not intended as an introduction to
numerical methods for ordinary differential equations. Our aim is to give the
important topics and analytical tools needed to study ordinary and partial differ-
ential equations. A course taught with the book should be one with mathematical
depth, but attractive to an audience with a large proportion of engineering and
physical sciences students.
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iv Preface

FEATURES

The following briefly describes the main features of the text.

Emphasis on applications. Applications in areas of mechanics, circuit
theory, astronomy, and biology are introduced throughout the text and in
the problem sets.

Exercises. Exercises are presented in order of difficulty and matched with
the order of the material presented, and the worked examples.

Classroom presentation. Every effort was made to match section lengths
with the amount of material needed for a classroom lecture presentation.
Algorithmic format. Upon completion of the discussion of a solution
technique, an algorithm is presented to assist the students in using the
technique. Examples following the algorithm show its use step-by-step.
Numerical techniques. Numerical methods are introduced throughout the
text, beginning with the most elementary ones. Students are asked to
compare different algorithms, and to vary step sizes, with the intent of giving
them a real appreciation for the use of numerical methods to study the
qualitative behavior of solutions of ordinary differential equations.

Linear systems. The emphasis is primarily on two- and three-dimensional
systems in which the eigenvalues and eigenvectors can be easily found. The
fundamental matrix is computed using both the eigenvector method and the
more efficient Laplace transform.

Partial differential equations. An clementary but careful presentation of
Fourier series is given using the normal modes of vibration of a taut string as
motivation. This is followed by the method of separation of variables used to
construct solutions to the classical, second order equations of mathematical
physics. A novel addition is a brief study of first order hyperbolic systems
using the eigenvalue—eigenvector methods discussed previously; this section
can be taught independently of the previous material.

Computer programs. Each elementary numerical algorithm is presented in
FORTRAN, but appendixes are included giving the algorithm in BASIC and
PASCAL. Later in the text the program RKF45, which uses simultaneously a
fourth and fifth order Runge—Kutta method to adjust step size, is introduced
and some numerical examples are given. It is not necessary to understand
the details of the code to be able to use it effectively.

Phase plane. The phase plane is briefly introduced in the chapter on second
order linear equations, as an aid to analyze the behavior of solutions, and
later in the chapter on nonlinear systems.

Theoretical considerations. Where such concepts as existence and
uniqueness of solutions, direction fields, linear independence, and
fundamental sets of solutions are introduced, students are given prior
examples and exercises to help underpin their understanding of the concept.
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m  Conservative systems. The chapter on nonlinear systems includes a
discussion of one degree of freedom conservative systems analyzed using
energy methods. If a brief discussion of nonlinear systems is needed, which
does not require phase plane analysis, this section can be taught
independently.

ORGANIZATION

We have written a text that offers a great deal of flexibility in the choice of material
to be covered. A basic course in ordinary differential equations for engineers and
physical sciences majors would consist of Chapters 1, 2, 3 (Runge—Kutta methods
only), 4, 5 and 7 (selected topics). Where Laplace transform methods are not
required to be taught, Chapter 4 can be omitted, and Chapter 6 or further topics
in nonlinear systems from Chapter 7 can be taught.

A course in linear systems, including both ordinary and partial differential
equations, would consist of Chapters 1, 2, 4, 5, 6, and 9. A one-quarter separate
course in partial differential equations, or as part of an engineering mathematics
course, could be constructed from the material in Chapters 6 and 9.

The book contains more material than can be used in a one-semester course.
But whether the course desired is a basic introductory course, or one emphasizing
linear or nonlinear systems, or introducing partial differential equations, the
authors believe the material presented in the text can be suitably arranged to meet
any need.

CHANGES IN THE SECOND EDITION

We have made extensive changes in the second edition of Differential Equations. It
should be emphasized that many of the changes came as a result of classroom expe-
rience, both here at New Mexico and at other institutions, as well as from review-
ers’ comments. We believe these changes will greatly improve the presentation of
the material to the student reader as well as to the instructor. Some examples of
some of the changes in the second edition are as follows:

® There is a 30% increase in the number of exercises, and exercises are
ordered by level of difficulty and to match the material presented and the
worked examples, which have also been increased.

@ A new chapter (Chapter 9) on Fourier series and partial differential
equations has been added. The final section of this chapter discusses first
order hyperbolic systems and transmission line equations using eigenvalue—
eigenvector methods—a first in introductory texts, to our knowledge.
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Much of the theoretical material has been introduced only after students
have had some hands on experiences solving the relevant differential
equations.

Numerical methods based on the trapezoidal rule and extrapolation have
been used in Chapter 1 to solve first order linear equations whose solutions
cannot be obtained by quadrature.

A discussion of higher order linear equations with application to beam
problems has been added to Chapter 2.

The discussion of linear independence and fundamental sets of solutions in
Chapter 2 has been greatly simplified and better motivated, as has the
discussion of the phase plane.

The emphasis of the Heaviside formulas in the discussion of the Laplace
transform (Chapter 4) has been reduced, and partial fractions expansions are
used more.

More emphasis has been given to the Problem/Solution format in worked
examples.

Material has been reordered and some sections split to make for better
classroom presentation and reader absorption.

An appendix has been added in which the elementary numerical techniques
are written in BASIC.
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1.1

FIRST ORDER
DIFFERENTIAL EQUATIONS

GENERAL REMARKS

An ordinary differential equation' is an equation expressing a relationship among
derivatives of an unknown function of a single variable. Such equations often result
from the mathematical expression of scientific laws connecting physical quantities
and their rates of change. For example, Newton’s law of cooling states that the rate
of change of temperature of a body is proportional to the difference in tempera-
ture between a cooling body and its surroundings. If T() represents the tempera-
ture of the body at time ¢ and § is the constant temperature of the surroundings,
Newton’s law leads to the differential equation

a _ —k(T — ), (1.1.1)

dt
where £ is a constant of proportionality. We know from experience that the tem-
perature of the body will change monotonically until we cannot detect a difference
between its temperature and that of its surroundings. But we shall need some
mathematics to answer questions such as: How rapidly does 7T(f) approach S? or
How does T(t) depend on the proportionality constant & and on the temperature
at the time we started our observations?

1. It is not clear why “ordinary” ever became standard terminology in a subject that motivated the
invention of the calculus, that has such a wide applicability to science and technology, and that
contains so many fascinating ideas and methods.



2 First Order Differential Equations

EXAMPLE 1 Show thatif T(t) = S + Ce™*'is substituted into (1.1.1) the expres-
sion becomes an identity in . Write C in terms of § and the temperature of the
body at ¢ = 0.

SOLUTION We substitute 7(¢) into (1.1.1) to obtain

d

d e ~k = _ _
E @) = :1; [S + Ce™] kCe k[T(t) S,

an identity in ¢.
If we set ¢ = 0 in the formula for 7(¢), then

T0) = S + C,
or

C =S8 — T(0). ]

The function 7(t) = S + (T(0) — S)e™*' is said to satisfy the differential equa-
tion (1.1.1). We see that T(f) approaches § exponentially as ¢ increases and that the
proportionality constant & appears in the argument of the exponential function. It
is called a rate constant.

Techniques for constructing solutions to differential equations will be pre-
sented in subsequent sections, but we need only the tools of calculus to test if a
function is or is not a solution to a differential equation. To do this we differentiate
the function as many times as needed and substitute the function and its derivatives
into the differential equation. This is illustrated in the following examples.

EXAMPLE 2 Show that y(t) = 6 sin 2¢ + 7 cos 3t is a solution to the differential
equation y” + 4y = —35 cos 2t.

SOLUTION From
y” = —24 sin 2t — 63 cos 2t,
4y = 24 sin 2¢ + 28 cos 2¢,

we have

y” + 4y = —35 cos 2t,

as required. [

EXAMPLE 3 Show that y(t) = 6 sin ¢ + 7 cos 3¢ is not a solution to the differ-
ential equation y” + 4y = —5 cos 2¢.
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SOLUTION From

”

—6sint — 63 cos 3¢,
24 sint + 28 cos 3¢,

y
4y

we have
y” + 4y = 18 sint — 35 cos 3t # —b5 cos 2¢

on any t-interval of nonzero length. This illustrates the fact that to be a solution a
function must satisfy the differential equation in a nontrivial way. ]

Our goal in studying differential equations is to determine both the qualitative
and quantitative properties of those functions that satisfy them; such functions are
called solutions. This can sometimes be done by representing the solutions as ele-
mentary functions, e.g., polynomials or trigonometric functions. More often, geo-
metric arguments are needed to determine the qualitative properties, and numer-
ical methods are needed to determine the quantitative properties. Numerical
techniques are especially important when an explicit representation of the solution
cannot be found.

Three differential equations that arise quite often in applications and that will
be discussed later in the book are:

d
1. d_Jt) = k()F(y), the growth equation;
d? d
2. L —2Q + R Q + Q = E(t), the LCR oscillator equation; and
dt dt C
d
y d_tz + %sin 6 = 0, the pendulum equation.

In all three equations ¢ is called the independent variable, and the unknown functions
¥, Q, and 6, whose derivatives explicitly appear, are called the dependent variables.
A solution is a function y(¢), Q(¢), or 6(¢) that satisfies the equation on an open ¢-
interval. Hence the solutions y, Q, and 8 are functions of ¢ but, in contrast with the
explicit notation k() and E(t), this functional dependence is to be understood from
the context.

Our study is made easier by grouping together those differential equations that
have a significant common property. The most important property is that of order.
The order of a differential equation is the order of the highest derivative of the depen-
dent variable which appears in the equation. For example, the oscillator and pen-
dulum equations are second order, while the growth equation is first order. In the
remainder of this chapter, first order differential equations will be studied, and in
later chapters higher order equations will be discussed.



4 First Order Differential Equations

A partial differential equation is a relationship involving an unknown function
of at least two variables and one or more of its derivatives. For instance, a partial
differential equation that describes the temperature u(x, f) in a thin heated wire as
a function of position x and time ¢ is

du _ Fu

E = w or u, = ku“,

where & is a constant dependent on the physical properties of the wire. An intro-
duction to some of the partial differential equations of mathematical physics is
given in Chapter 9.

EXERCISES
1.1
In Exercises 1-6 determine which of the given equations are ordinary differen-

tial equations and which are partial differential equations. Identify the dependent
and independent variables.

: dy\’ 2 :
1. 7 + 3y + 2y = sin ¢ 2. o + 4y =1t 3. u, — 9u, = 3 sin x cos ¢
du du d*x dx
4. — T — = 5. —w —4— + Tx = 4¢ . Q" =
ax + ¢ Y 0 pr ol + 7x e 6. ¢” + (cost)p = 0
In Exercises 7-12 determine the order of each of the given differential
equations.
d’
7.y +4y=0 S.Zi-t;+4y2=7 9.y + ¢y — 1) + 4y = 3sint
10. (p@)yY + q®)y = 0 11. y'y” + 4y’ = 0 12. () +y* = 4

In Exercises 13-20 verify by direct substitution that the given function y(t) is a
solution.

d
13. 2 =100 — 0, ) =t+0.1

dt
dy . 1
14. = = 41y’ 1) =
a0 =TT
dy ' —2t 1 ¢
15. E = —2y + ¢, () = Ce™® + ge, C any constant
dy 13 — 2y) 1 3
16. — = —/—=, ) = 9
a #—1) 1 (t2—1)+2



