FOUNDATIONS OF
- DEPENDABLE

COMPUTING
System
Implementation

edited by

Gary M. Koob
Clifford G. Lau

KLUWER ACADEMIC PUBLISHERS

FOUNDATIONS OF
DEPENDABLE COMPUTING
System Implementation

edited by

Gary M. Koob
Clifford G. Lau
Office of Naval Research

R
KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data
Foundations of dependable computing. System implementation / edited
by Gary M. Koob, Clifford G. Lau.
p. cm. -- (The Kluwer international series in engineering and
computer science ; 0285)
Includes bibliographical references and index.
ISBN 0-7923-9486-0
1. Electronic digital computers--Reliability. 2. Real-time data
processing. 3. Fault-tolerant computing. 4. Systems engineering.
I. Koob, Gary M., 1958- . II. Lau, Clifford. III. Series: Kluwer
international series in engineering and computer science ; SECS
0285.
QA76.5.F624 1994
004.2’2--dc20 94-29138
CIP

Copyright © 1994 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any means, mechanical,
photo-copying, recording, or otherwise, without the prior written permission of
the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park,
Norwell, Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America

FOUNDATIONS OF
DEPENDABLE COMPUTING
System Implementation

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

OFFICE OF NAVAL RESEARCH

Advanced Book Series
Consulting Editor
André M. van Tilborg

Other titles in the series:

FOUNDATIONS OF DEPENDABLE COMPUTING: Models and
Frameworks for Dependable Systems, edited by Gary M. Koob and Clifford
G. Lau

ISBN: 0-7923-9484-4

FOUNDATIONS OF DEPENDABLE COMPUTING: Paradigms for
Dependable Applications, edited by Gary M. Koob and Clifford G. Lau
ISBN: 0-7923-9485-2

PARALLEL ALGORITHM DERIVATION AND PROGRAM
TRANSFORMATION, edited by Robert Paige, John Reif and Ralph Wachter
ISBN: 0-7923-9362-7

FOUNDATIONS OF KNOWLEDGE ACQUISITION: Cognitive Models of
Complex Learning, edited by Susan Chipman and Alan L. Meyrowitz
ISBN: 0-7923-9277-9

FOUNDATIONS OF KNOWLEDGE ACQUISITION: Machine Learning,
edited by Alan L. Meyrowitz and Susan Chipman
ISBN: 0-7923-9278-7

FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specifications
and Methods, edited by André M. van Tilborg and Gary M. Koob
ISBN: 0-7923-9167-5

FOUNDATIONS OF REAL-TIME COMPUTING: Scheduling and Resource
Management, edited by André M. van Tilborg and Gary M. Koob
ISBN: 0-7923-9166-7

PREFACE

Dependability has long been a central concern in the design of space-based
and military systems, where survivability for the prescribed mission duration is an
essential requirement, and is becoming an increasingly important attribute of gov-
emment and commercial systems where reduced availability may have severe financial
consequences or even lead to loss of life. Historically, research in the field of depend-
able computing has focused on the theory and techniques for preventing hardware and
environmentally induced faults through increasing the intrinsic reliability of compo-
nents and systems (fault avoidance), or surviving such faults through massive redun-
dancy at the hardware level (fault tolerance).

Recent advances in hardware, software, and measurement technology cou-
pled with new insights into the nature, scope, and fundamental principles of depend-
able computing, however, contributed to the creation of a challenging new research
agenda in the late eighties aimed at dramatically increasing the power, effectiveness,
and efficiency of approaches to ensuring dependability in critical systems

At the core of this new agenda was a paradigm shift spurred by the recogni-
tion that dependability is fundamentally an attribute of applications and services—not
platforms. Research should therefore focus on (1) developing a scientific understand-
ing of the manifestations of faults at the application level in terms of their ultimate
impact on the correctmess and survivability of the application; (2) innovative,
application-sensitive approaches to detecting and mitigating this impact; and (3)
hierarchical system support for these new approaches.

Such a paradigm shift necessarily entailed a concomitant shift in emphasis
away from inefficient, inflexible, hardware-based approaches toward higher level,
more efficient and flexible software-based solutions. Consequently, the role of hard-
ware-based mechanisms was redefined to that of providing and implementing the ab-
stractions required to support the higher level software-based mechanisms in an inte-
grated, hierarchical approach to ultradependable system design. This shift was fur-
thermore compatible with an expanded view of “dependability,” which had evolved to
mean “the ability of the system to deliver the specified (or expected) service.” Such a
definition encompasses not only survival of traditional single hardware faults and
environmental disturbances but more complex and less-well understood phenomena,
as well: Byzantine faults, correlated errors, timing faults, software design and process
interaction errors, and—most significantly—the unique issues encountered in real-

viii

time systems in which faults and transient overload conditions must be detected and
handled under hard deadline and resource constraints.

As sources of service disruption multiplied and focus shifted to their ulti-
mate effects, traditional frameworks for reasoning about dependability had to be
rethought. The classical fault/error/failure model, in which underlying anomalies
(faults) give rise to incorrect values (errors), which may ultimately cause incorrect
behavior at the output (failures), required extension to capture timing and perfor-
mance issues. Graceful degradation, a long standing principle codifying perfor-
mance/dependability trade-offs must be more carefully applied in real-time systems,
where individual task requirements supercede general throughput optimization in any
assessment. Indeed, embedded real-time systems—often characterized by interaction
with physical sensors and actuators—may possess an inherent ability to tolerate brief
periods of incorrect interaction, either in the values exchanged or the timing of those
exchanges. Thus, a technical failure of the embedded computer does not necessarily
imply a system failure. The challenge of capturing and modeling dependability for
such potentially complex requirements is matched by the challenge of successfully
exploiting them to devise more intelligent and efficient—as well as more complete—
dependability mechanisms.

The evolution to a hierarchical, software-dominated approach would not
have been possible without several enabling advances in hardware and software tech-
nology over the past decade:

(1) Advances in VLSI technology and RISC architectures have produced
components with more chip real estate available for incorporation of effi-
cient concurrent error detection mechanisms and more on-chip resources
permitting software management of fine-grain redundancy;

(2) The emergence of practical parallel and distributed computing platforms
possessing inherent coarse-grain redundancy of processing and communica-
tions resources—also amenable to efficient software-based management by
either the system or the application;

(3) Advances in algorithms and languages for parallel and distributed com-
puting leading to new insights in and paradigms for problem decomposition,
module encapsulation, and module interaction, potentially exploitable in re-
fining redundancy requirements and isolating faults;

(4) Advances in distributed operating systems allowing more efficient inter-
process communication and more intelligent resource management;

ix

(5) Advances in compiler technology that permit efficient, automatic in-
strumentation or restructuring of application code, program decomposition,
and coarse and fine-grain resource management; and

(6) The emergence of fault-injection technology for conducting controlled
experiments to determine the system and application-level manifestations of
faults and evaluating the effectiveness or performance of fault-tolerance
methods.

In response to this challenging, new vision for dependable computing re-
search, the advent of the technological opportunities for realizing it, and its potential
for addressing critical dependability needs of Naval, Defense, and commercial sys-
tems, the Office of Naval Research launched a five-year basic research initiative in
1990 in Ultradependable Multicomputers and Electronic Systems to accelerate and in-
tegrate progress in this important discipline. The objective of the initiative is to es-
tablish the fundamental principles as well as practical approaches for efficiently in-
corporating dependability into critical applications running on modern platforms.
More specifically, the initiative sought increased effectiveness and efficiency through
(1) Intelligent exploitation of the inherent redundancy available in modern parallel and
distributed computers and VLSI components; (2) More precise characterization of the
sources and manifestations of errors; (3) Exploitation of application semantics at all
levels—code, task, algorithm, and domain—to allow optimization of fault-tolerance
mechanisms to both application requirements and resource limitations; (4)
Hierarchical, integrated software/hardware approaches; and (5) Development of scien-
tific methods for evaluating and comparing candidate approaches.

Implementation of this broad mandate as a coherent research program neces-
sitated focusing on a small cross-section of promising application-sensitive
paradigms (including language, algorithm, and coordination-based approaches), their
required hardware, compiler, and system support, and a few selected modeling and
evaluation projects. In scope, the initiative emphasizes dependability primarily with
respect to an expanded class of hardware and environment (both physical and opera-
tional) faults. Many of the efforts furthermore explicitly address issues of dependabil-
ity unique to the domain of embedded real-time systems.

The success of the initiative and the significance of the research is demon-
strated by the ongoing associations that many of our principal investigators have
forged with a variety of military, Government, and commercial projects whose criti-
cal needs are leading to the rapid assimilation of concepts, approaches, and expertise
arising from this initiative. Activities influenced to date include the FAA's Advanced
Automation System for air traffic control, the Navy's AX project and Next
Generation Computing Resources standards program, the Air Force's Center for
Dependable Systems, the OSF/1 project, the space station Freedom, the Strategic

X

Defense Initiative, and research projects at GE, DEC, Tandem, the Naval Surface
Warfare Center, and MITRE Corporation.

This book series is a compendium of papers summarizing the major results
and accomplishments attained under the auspices of the ONR initiative in its first
three years. Rather than providing a comprehensive text on dependable computing,
the series is intended to capture the breadth, depth, and impact of recent advances in
the field, as reflected through the specific research efforts represented, in the context
of the vision articulated here. Each chapter does, however, incorporate appropriate
background material and references. In view of the increasing importance and perva-
siveness of real-time concerns in critical systems that impact our daily lives—rang-
ing from multimedia communications to manufacturing to medical instrumenta-
tion—the real-time material is woven throughout the series rather than isolated in a
single section or volume.

The series is partitioned into three volumes, corresponding to the three
principal avenues of research identified at the beginning of this preface. While many
of the chapters actually address issues at multiple levels, reflecting the comprehensive
nature of the associated research project, they have been organized into these volumes
on the basis of the primary conceptual contribution of the work. Agha and Sturman,
for example, describe a framework (reflective architectures), a paradigm (replicated
actors), and a prototype implementation (the Screed language and Broadway runtime
system). But because the salient attribute of this work is the use of reflection to
dynamically adapt an application to its environment, it is included in the Frameworks
volume.

Volume I, Models and Frameworks for Dependable Systems, presents two
comprehensive frameworks for reasoning about system dependability, thereby estab-
lishing a context for understanding the roles played by specific approaches presented
throughout the series. This volume then explores the range of models and analysis
methods necessary to design, validate, and analyze dependable systems.

Volume II, Paradigms for Dependable Applications, presents a variety of
specific approaches to achieving dependability at the application level. Driven by the
higher level fault models of Volume I and buiilt on the lower level abstractions im-
plemented in Volume III, these approaches demonstrate how dependability may be
tuned to the requirements of an application, the fault environment, and the character-
istics of the target platform. Three classes of paradigms are considered: protocol-
based paradigms for distributed applications, algorithm-based paradigms for parallel
applications, and approaches to exploiting application semantics in embedded real-
time control systems.

Volume III, System Implementation, explores the system infrastructure
needed to support the various paradigms of Volume II. Approaches to implementing

X1

suppport mechanisms and to incorporating additional appropriate levels of fault detec-
tion and fault tolerance at the processor, network, and operating system level are pre-
sented. A primary concern at these levels is balancing cost and performance against
coverage and overall dependability. As these chapters demonstrate, low overhead,
practical solutions are attainable and not necessarily incompatible with performance
considerations. The section on innovative compiler support, in particular, demon-
strates how the benefits of application specificity may be obtained while reducing
hardware cost and run-time overhead.

This third volume in the series completes the picture established in the first
two volumes by presenting detailed descriptions of techniques for implementing de-
pendability infrastructure of the system: the operating system, run-time environment,
communications, and processor levels.

Section 1 presents design approaches for implementing concurrent error de-
tection in processors and other hardware components. Rennels and Kim apply the
principles of self-checking, self-exercising design at the processor level. Rao, et al,
use an extension of the well-known Berger code as the mathematical foundation for
the construction of self-checking ALUs. These components provide the fundamental
building blocks of dependable systems and the abstractions required by higher level
software implemented protocols.

The field of fault-tolerant computing was once dominated by concerns over
the dependability of the processor. In modern parallel and distributed systems, the re-
liability of the network is just as critical. Communications dependability—Ilike pro-
cessor dependability—is more appropriately addressed at the lower layers of the sys-
tem to minimize impact on performance and to simplify higher-level protocols and
algorithms. In the first chapter of Section 2, Bolding and Snyder describe how the
inherent attributes of chaotic routing—an approach proposed for its performance ad-
vantages in parallel systems—may be adapted to support dependability as well. The
use of non-determinism in chaotic routing is the key to realizing its goal of high
throughput, but is inappropriate for real-time systems where low latency and pre-
dictability are the primary concerns. Shin and Zheng offer the concept of redundant
real-time channels as a solution to the problem of dependable end-to-end communica-
tions in distributed systems under hard real-time constraints.

Compiler technology has emerged within the past decade as a dominant fac-
tor in effectively mapping application demands onto available resources to achieve
high utilization. The chapters in Section 3 explore the intersection of compiler op-
timizations for high performance and compiler transformations to support dependabil-
ity goals. Fuchs, et al, describe the similarities of compiler transformations intended
to support instruction-level recovery from transient errors and the state management
requirements encountered when speculative execution is employed in super-scalar ar-
chitectures. Banerjee, et al, adapt parallelizing compiler technology to the automa-

X1i

tion of algorithm-based fault tolerance. The approach considers not only transforma-
tions for generating checks, but also partitioning, mapping, and granularity adjust-
ment strategies that balance performance and dependability requirements.

Operating systems support is central to the design of modern dependable
systems. Support is required for service abstractions, communication, checkpointing
and recovery, and resource/redundancy management. All of these are considered in
Section 4. Russinovich, et al, describe how various error detection and recovery
mechanisms may be efficiently integrated into an operating system built on the pop-
ular Mach microkernel in a manner transparent to the application itself but customiz-
able to its requirements. Protocol-based paradigms for distributed systems all seem
to rely on a number of fundamental protocols such as atomic multicast and group
membership. Schlichting, et al, have organized these operations into a comprehen-
sive communications "substrate”. By exploiting the interdependencies among them,
an efficient implementation has been constructed. The problem of resource manage-
ment in a real-time distributed system becomes even more complex when deadline-
constrained redundancy and fault management must be supported. Thuel and
Strosnider present a framework for managing redundancy, exceptions, and recovery
under hard real-time constraints.

Gary M. Koob
Mathematical, Computer and Information Sciences Division
Office of Naval Research

Clifford G. Lau
Electronics Division
Office of Naval Research

ACKNOWLEDGEMENTS

The editors regret that, due to circumstances beyond their control, two planned
contributions to this series could not be included in the final publications: “Compiler
Generated Self-Monitoring Programs for Concurrent Detection of Run-Time Errors,”
by J.P. Shen and “The Hybrid Fault Effects Model for Dependable Systems,” by
C.J. Walter, M.M. Hugue, and N. Suri. Both represent significant, innovative
contributions to the theory and practice of dependable computing and their omission
diminishes the overall quality and completeness of these volumes.

The editors would also like to gratefully acknowledge the invaluable contributions of
the following individuals to the success of the Office of Naval Research initiative in
Ultradependable Multicomputers and Electronic Systems and this book series: Joe
Chiara, George Gilley, Walt Heimerdinger, Robert Holland, Michelle Hugue,
Miroslaw Malek, Tim Monaghan, Richard Scalzo, Jim Smith, André van Tilborg,
and Chuck Weinstock.

CONTENTS

Preface............ 279 059 850 15 50 250 £ 0 308 3% 70 0 9 o e o o o B s 5 vii
Acknowledgements ...cocosenssvressrsssesssssrossnssnsess xiii
1. DEPENDABLE COMPONENTSccccvveneennensn R |
1.1 Self-Checking and Self-Exercising Design for Hierarchic
Long-Life Fault-Tolerant SyStems..........c..oceutuuereeiineriiniieeeiieeeniieeeieneenn 3
D.A. Rennels and H. Kim
1.2 Design of Self-Checking Processors Using Efficient Berger
Check PrediCtion LOgiC suusmmnse sonsssn susvvsmsssossmssins s 505 55 mas mish i ibss 35
T.R.N. Rao, G-L Feng, and M.S. Kolluru
2. DEPENDABLE COMMUNICATIONS........... v oew e 69
2.1 Network Fault-Detection and Recovery in the Chaos Router...................... 71
K.W. Bolding and L. Snyder
2.2 Real-Time Fault-Tolerant Communication in Distributed
Computing SYSEINScevvviutiieeiieiiieiie et e eeee e eeee e aeeeaeaan 87

K.G. Shin and Q. Zheng

vi
3. COMPILER SUPPORT c.icvviitreneeeeeneccsaneeneessa133

3.1 Speculative Execution and Compiler-Assisted Multiple
INSLrUCHON RECOVEIY ...iveiiniiieineei e ettt et e e e 135
W.K. Fuchs, N.J. Alewine, and W-M Hwu

3.2 Compiler Assisted Synthesis of Algorithm-Based Checking
il MultiproCESSOLS. «viismesisomsiesssmimsavom ssesnssssasssesmsssss smeieaasmsmsis sasuss 159
P. Banerjee, V. Balasubramanian, and A. Roy-Chowdhury

4. OPERATING SYSTEM SUPPORT............ —3 .

4.1 Application-Transparent Fault Management in
Fault-Tolerant Machcooiiiiiiiiiiiiiiiiiiiiciiie e 215
M. Russinovich, Z. Segall, and D.P. Siewiorek

4.2 Constructing Dependable Distributed Systems Using Consul................... 243
R.D. Schlichting, S. Mishra, and L.L. Peterson

4.3 Enhancing Fault-Tolerance of Real-Time Systems Through

THmE REAUTAANCY «es s sonssenssnmsssmsimninin snonion iosossn s is insssdssssaone naenmass vae 265
S.R. Thuel and J.K. Strosnider

IndeX...ooieeeeeeeeeeeeeeeoeosoeeensncsecssossacnas veeeess.319

SECTION 1

DEPENDABLE COMPONENTS

SECTION 1.1

Self-Checking and Self-Exercising Design for
Hierarchic Long-Life Fault-Tolerant Systems

David Rennels and Hyeongil Kim!

Abstract

This research deals with fault-tolerant computers capable of operating for
extended periods without external maintenance. Conventional fault-tolerance
techniques such as majority voting are unsuitable for these applications,
because performance is too low, power consumption is too high and an exces-
sive number of spares must be included to keep all of the replicated systems
working over an extended life. The preferred design approach is to operate as
many different computations as possible on single computers, thus maximiz-
ing the amount of processing available from limited hardware resources.
Fault-tolerance is implemented in a hierarchic fashion. Fault recovery is either
done locally within an afflicted computer or, if that is unsuccessful, by the
other working computers when one fails. Concurrent error detection is
required in the computers making up these systems since errors must be
quickly detected and isolated to allow recovery to begin.

This chapter discusses ways of implementing concurrent error detection (i.e.,
self-checking) and in addition providing self-exercising capabilities that can
rapidly expose dormant faults and latent errors. The fundamentals of self-
checking design are presented along with an example -- the design of a self-
checking self-exercising memory system. A new methodology for implement-
ing self-checking in asynchronous subsystems is discussed along with error
simulation results to examine its effectiveness.

1.1.1 Introduction

There is a class of multicomputer applications that require long unmaintained opera-
tion in the range of a decade or more. The obvious example is remote sensing, e.g.,
space satellites. Important new applications of this type are expected for computers
that are embedded in long-life host systems where maintenance is expensive or incon-

1. Computer Science Department, University of California at Los Angeles. This
work was supported by the Office of Naval Research, grant NO0014-91-J-1009.

