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preface

This text is designed for a two-semester course in the fundamental
concepts of mathematics. It is strictly a content and not a methods text.
Its purpose is two-fold: (1) to provide prospective teachers with the mathe-
matical preparation necessary to teach the modern elementary and junior
high school curricula, and (2) to provide the liberal arts student with a
terminal course wherein structure and unifying concepts are emphasized.
It is also suitable for inservice training programs for teachers.

The authors have been influenced and guided by the recommendations
of the CUPM, the CEEB, the SMSG, and other agencies concerned with
curriculum improvement. This text is a compromise of these recommenda-
tions. A conscious effort has been made to keep the text readable from the
point of view of a student with two years of high school mathematics
preparation. Understanding is stressed throughout and is enhanced by
a balance of intuition and rigor. The structural concepts of group, ring,
integral domain, and field are introduced in a natural way and only after
simple and familiar examples have been discussed in detail.

A distinguishing feature is the insertion of numerous and frequent
sets of exercises. This permits immediate application of newly acquired
concepts and reinforces learning. Optional sections and exercises are
indicated by an asterisk and may be used for enrichment at the discretion
of the instructor.
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Preface

Chapter 1 introduces the student to the nature of mathematics and
the essentials of a deductive system. Chapter 2 presents the elements of
set theory used throughout the remainder of the text. Chapter 3 discusses
the nature of a mathematical proof and illustrates the various methods
of proofand disproofin detail. Chapter4 isa cursory and intuitive preview of
number systems which prepares the student for the detailed treatment
of the properties of number systems in the ensuing chapters. Beginning
with the set of natural numbers, the successive extensions to the integers,
the rational numbers, and the real numbers are motivated by employing
only the closure axiom with respect to the four arithmetic operations.
The extension of the set of real numbers to the set of complex numbers is
based on the need for algebraic closure. In Chapter 5 the properties of the
natural numbers are treated. The concept of a mathematical (algebraic)
system is introduced and is used to discuss the axioms for the set of natural
numbers under addition and multiplication. This is followed by a discus-
sion of the order properties. The principle of finite induction is presented
as an optional topic. Chapter 6 treats the properties of the set of integers.
The concepts of a group, a’ring, and an integral domain are introduced in a
familiar setting here. Examples of finite groups and topics from elementary
number theory are included. The section concerning the congruence of
integers modulo n provides an opportunity to enhance the understanding
of the structural concepts presented at the beginning of the chapter. Chap-
ter 7 presents a development of the field of rational numbers using the
integral domain of integers as a basis. A discussion of finite fields is in-
cluded. Chapter 8 consists of an intuitive treatment of the field of real
numbers and Chapter 9 completes the discussion of the field of complex
numbers begun in Chapter 4. Chapter 10 consists of a detailed treatment
of numeration systems. It contains a review of the Hindu-Arabic system
and an introduction to systems involving base two, base five, and base
twelve. Chapter 11 is a careful development of the foundations of Euclidean
geometry. A sequence of theorems recommended by the Commission on
Mathematics of the CEEB is presented in Chapter 12. This serves as an
efficient preparation for the coordinate geometry of Chapter 13. Chapter 14
introduces the concepts of precision and accuracy and develops the use
of approximate numbers and the mensuration formulas for the common
geometric figures of two and three dimensions. In the final chapter, which
treats relations and functions, the emphasis is on fundamental properties
rather than on manipulative techniques.

A preliminary edition of this text was class-tested for two years at
Westfield State College, Westfield, Massachusetts.

The authors wish to thank President Leonard J. Savignano and Dean
Edward S. Townsend of Westfield State College for their administrative
support and encouragement. We are particularly indebted to our colleagues
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in the department of mathematics at Westfield who have read parts of the
manuscript, have made valuable suggestions, and have class-tested the
preliminary edition.

ALPHONSE J. JACKOWSKI
JOHN B. SBREGA
Westfield, Massachusetts
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iIntroduction

1.1
The Nature of Mathematics

Mathematics has many aspects and its generality and usefulness are
apparent in many forms of human endeavor. The scientist uses the language
of mathematics to formulate his theories in concise form. The engineer
finds mathematics an essential tool for design and construction. The manu-
facturer turns to mathematics to regulate and to control the quality of his
products. Furthermore, since the advent of the computer, we find mathe-
matics making a tremendous impact on such diverse fields as biology,
business, economics, medicine, and even music. Likewise, we find mathe-
matics playing an ever-increasing role in the more mundane phases of
everyday life.

Although mathematics is often divided into two main categories,
applied mathematics and pure mathematics, mathematics itself is essentially
abstract and its power and generality are inherent in its abstract nature. The
kind of mathematics we have discussed thus far is applied mathematics,
and one involved in such work is called an applied mathematician. On the
other hand, the pure mathematician studies mathematics in its own right
and finds great aesthetic appeal in its logical structure and abstract systems.
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