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Preface

A text surveying perturbation techniques and sensitivity analysis of linear systems
is an ambitious undertaking, considering the lack of basic comprehensive texts
on the subject. A wide-ranging and global coverage of the topic is as yet missing,
despite the existence of numerous monographs dealing with specific topics but
generally of use to only a narrow category of people. In fact, most works approach
this subject from the numerical analysis point of view. Indeed, researchers in this
field have been most concerned with this topic, although engineers and scholars in
all fields may find it equally interesting.

One can state, without great exaggeration, that a great deal of engineering work is
devoted to testing systems’ sensitivity to changes in design parameters. As a rule,
high-sensitivity elements are those which should be designed with utmost care.
On the other hand, as the mathematical modelling serving for the design process is
usually idealized and often inaccurately formulated, some unforeseen alterations may
cause the system to behave in a slightly different manner. Sensitivity analysis can
help the engineer innovate ways to minimize such system discrepancy, since it starts
from the assumption of such a discrepancy between the ideal and the actual
system.

All in all, methods of mathematical optimization rely one way or the other on
relative sensitivities, under a different title in each, ranging from gradient methods
to model tracking or self-learning systems. Even the simple task of fitting data to a
curve usually involves sensitivity calculations. As for social scientists, economists,
as well as for many other disciplines, sensitivity and perturbation techniques can
provide valuable information about the amount of inaccuracy in the behaviour
of a model as related to the inaccuracies in the system’s data. If the data gathered
by field study or experimental testing falls within certain tolerance limits, the
tolerances may well be amplified and widened in the output results obtained. The
question might then arise as to how uncertain the results are — or how unrealiable — in
relation to the data’s uncertainties. In this instance, perturbation analysis can provide
valuable information about regions of compatibility and admissibility of solutions.
An alternate use might also be to determine the allowable data tolerances in a para-
meter for the results to sustain a certain level of accuracy; and so forth.

As rewarding a subject as it may be, sensitivity analysis still imposes a tedious job
when it comes to organizing a text on it. As the text is intended to serve a wide audience,
applications of various kinds had to be included, and a huge effort had to be devoted to
ensuring as comprehensive a discussion as possible of the area of linear systems.
Some texts have tried to attract the widest readership by choosing some topics of the
linear systems and some of the nonlinear ones. Practical experience has shown that
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such texts have little to add to the real user’s knowledge, and only serve to provide
an idea about the subject. The present line of approach is stronger, in that it provides
not only practical applications but mainly a coherent mathematical justification that
brings still further applications within range.

Perturbation techniques and sensitivity analysis are of course no new terms, nor
are they recently explored fields. As a mathematical discipline, however, a unified
body of knowledge rather than an elementary application, they are rather young.
Only during this last century have celestial mechanics witnessed an era of rapid
progress; the three-body problem — in contrast with Newton’s two body problem —
becoming the new challenge. Workers in the field opted to consider this third
body as a perturbation in the field. In this context also, Lagrange’s ingenious
method of variation of elements was introduced, and Poincaré’s theory of asymptotic
expansions enabled the summing up of a few terms of a divergent series to yield almost
exactly its sum.

Perturbation theory in linear algebra is an even more recent branch. In 1948,
Turing’s famous paper triggered interest in the problem of sensitivity of solutions
of linear equations to round-off errors. In this paper, Turing laid down the defi-
nition of a condition number by which a small input error in the data can be
drastically amplified in the solution. Numerical analysts then acknowledged
this number as the major factor affecting computational accuracy, and have tried
since then to control it while working out any new numerical procedure. But an
ill-conditioned system can only be cured up to a certain extent, and no matter how
cunning, skilled or elaborate one is, Turing’s number or a variant of it will eventually
hinder our illusion.

This work covers the subject of sensitivity analysis as related to linear equations.
At first, the plan was to furnish one for linear systems in general, but as the work grew
it was found impossible to survey the whole theory in one volume. It was then
decided to release the available material as it constitutes a unified body of knowledge.
Naturally, we started with the first basic problem in linear systems, that of linear
equations, for we shall need many of the results if we are to proceed further. As the
reader might have noticed, it was not in our plan to either survey or compare the
different numerical methods for solving the equations. For this, he may refer to
current literature in numerical analysis, which is plentiful. Rather, our task was
only concerned with the problem of executing perturbation analysis of the equations,
while making reference to some relevent applications.

The desire on the part of the author to provide such a text grew up incidentally from
his training in engineering and related disciplines. Workers in theses fields sometimes
encounter problems in which it is important to perceive the accuracy of the results
when the input data is subject to uncertainty or errors. This they seek to determine
irrespective of any numerical treatment of the problem. They may also wish to pursue
a sensitivity analysis of their models under newly varying conditions. It was this
philosophy that inspired the writing of the text and which led the author to
prepare the rest of the manuscript. This explains why rounding errors are incor-
porated into the larger context of perturbations, and why no effort has been made to
discuss error analysis from the view point of comparing different numerical
strategies. In any case, there is a vast literature on this subject alone. And instead of
making entangling the reader so overwhelmingly in the different numerical procedures
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for solving the equations, it concentrates on deepening his working knowledge in
this fruitful area. This does not at all mean that numerical analysts cannot profit
from it. On the contrary, many up-to-date error bounds have been included and
compared. Furthermore, criteria for validating the solutions and ways of improving
them are to be found therein.

The text is therefore a survey and a working knowledge book on perturbation
techniques and sensitivity analysis as applied to linear equations and linear pro-
gramming. It uses a moderate language which appeals to engineers and applied mathe-
maticians. Many workers in various disciplines will find it equally valuable. And as a
text, it can easily fit — from experience — into a first course on the subject to be taught
in one lecture per week over one semester. As to its rigor, it will soon be realized that
there is some overlap in levels, in the sense that some knowledge is standard while
some is culled from original papers. Our intention was to encourage readers of
different backgrounds and training to approach the subject.

The book consists of five chapters, each related to a specific case so as to make it
self-contained. Hence, it will be found that it is not strictly necessary to read the
text from the beginning. In other words, it looks as though each chapter is in-
dependently written for the reader interested in one specific subject. And we certainly
make no claim to completeness in any one of them.

In conclusion, the author feels that such a subject deserves a global coverage which
communicates efficiently with the different audiences. And with this specific idea
in mind, we hope to have fulfilled this aim and to have filled a gap in the available
literature.

Indeed, a word of gratitude should be addressed to all who have contributed to the
appearance of this book. Prof. P. Spellucci at the Technische Hochschule in
Darmstadt, Prof. T. Yamamoto at Ehime University and Dr. J. Garloff at the
Universitdt Freiburg read various parts of the manuscript and made several suggestions
which greatly improved the text and rescued me from many blunders. Any remaining
pit-falls become naturally those of the author. Dr. J. Rohn at Charles University
provided the author with a mathematical notion which helped in some proofs in
section 2.6. The author is also grateful to Prof. N. Makary and Prof. E. Rasmy for
fruitful discussions related respectively to sections 4.5 and 5.3, and also to Dr.
A. Hussean and Dr. T. El-Mistikawy who helped in calculations of sections 3.4 and
4.3; all are based at Cairo University. The whole project of writing this text would have
indeed been foundered without permission from Cairo University to allow me to visit
the University of California-Berkeley on my sabbatical leave, thus making use of its
rich library. The same also applied to the Alexander von Humboldt Foundation,
which gave me the opportunity to visit the Technische Hochschule in Darmstadt,
enabling me also to profit from the staff there as well as its different libraries. I would
like also to take the opportunity of thanking Prof. A. Bjorck for his valuable
comments on part of the manuscript. My sincere thanks are also addressed to Eng.
A. Assaad for editing the text; the effort he put into this work is greatly appreciated.
Finally, I am grateful to my wife for allowing me ample time on the manuscript.

Cairo, August, 1986 A. S. Deif
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Chapter 1

Perturbation of Linear Equations

1.1 Introduction

This chapter will discuss the behaviour of the system of linear simultaneous
equations

Ax = b

when the matrix 4 and the vector b are subjected to small order perturbations A4
and Ab respectively. The problem then becomes

A+ AA) (x +Ax) =b + Ab

and we are mainly concerned with studying the deviation Ax of the solution with
the perturbation. Such an exercise is called sensitivity analysis, for the extent of the
deviation Ax relative to A4 and Ab defines the sensitivity of the system. A highly
sensitive system is roughly one where a relatively large deviation Ax is incurred by
small perturbations A4 and Ab. As we shall see, highly sensitive systems are generally
to be avoided in practice. They are referred to as ill-conditioned, for a highly sensitive
system would yield large variations in the results for only small uncertainties in
the data. To clarify this fact, let us study the behaviour of the system of equations

x+y=2
0.49x + 0.51y =1

— representing a pair of straight lines intersecting at x = 1, y = 1 — when a small
term ¢ is added to the equations. Surprisingly enough, the set of equations obtained,
namely

x+y=2+¢
0.49x + 0.51y =1

represents a pair of straight lines meeting at a point (x, y) given by x = 1 + 25.5¢;
¥ =1 — 24.5¢, and rather distant from x = 1, y = 1. Here, a small change of order ¢
in the equations has produced a change of 25¢ in the solution. This system has
definitely a high sensitivity to perturbations in its matrix 4 and vector b.

It is indeed worth noting that sensitivity analysis is usually performed after a
problem has been solved for x. It is not intended to find an adjusted solution for the
system

(A+Ad)x=b+ Ab
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for then, the effect of the perturbations A4 and Ab on x will have remained un-
examined. Rather, it aims at representing Ax as a function of the perturbations A4
and Ab, in order to elicit their effect on the original solution. For the forementioned
example, this function would be given by

ﬂ =~ 50 %

X by

At this stage, let us examine the origins of the perturbations A4 and Ab of
a system of linear equations and their possible practical meanings. In the field of
economy, social sciences, etc . . ., system perturbations usually stem from the lack of
precision of the data collected through field observations, this lack being termed
uncertainty of the data. For the engineer they may be intentionally induced into one
of the design parameters to investigate the behaviour in service of the designed system,
be it an electrical system, a chemical plant or a building’s structure. For the
mathematician, perturbations might appear as the result of truncating some infinite
series, say T Or e.

Finally, coming last though not least, perturbations represent in numerical
analysis the effect of round-off errors. Such errors might arise during data reading,
or in the course of computation, at the level of an intermediate result. Of all
disciplines, numerical analysts have been most interested in this area for the sake of
precision in the results they obtain.

This text will not assign to A4 and Ab any one of the foregoing interpretations,
dealing with them in a most general manner through their symbols. This approach
does not void the symbols from their factual content. Instead, it keeps them in a form
so general that they can account at the same time for all perturbations inherent to —
or induced in the system. On some occasions, some interpretation or the other will be
emphasized, only for the sake of illustrating the concept. Being far from specialization,
this text is not intended for the sole use of numerical analysts. For the more
specialized application of error analysis to various computational algorithms, the
reader is referred to Wilkinson’s treatises (1963, 65), which form only a part of the
literature on the subject.

However, it may be of interest to illustrate here how rounding-off can be
accounted for as a perturbation. Let us therefore consider the solution for
x = (x;, x,)" of the system

2 1\ (x1\ [ 2

1 2/ \xp) ™ X~
when performed on a four-digit machine with fixed-point arithmetic. The solution
comes as

X, = 1.667, x, = —1.333

This is only an approximation to the exact solution, since substitution into the set of
equations yields the residual

r= A% — b = (0.001, 0.001)”
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The error residual is due to the machine’s approximation of the solution which is
more exactly

X, =53 x,= —4/3

Alternatively, one can state that the vector X obtained is an exact solution of the
perturbed system

AX = b + Ab

where Ab = r.

In any case, whether A4 and Ab account for errors due to rounding, truncation or
inaccuracy in the input data, the solution obtained will still deviate from the ideal
case. For the above example, the solution’s deviation can be expressed by the
vector

Ax = (1.667 — 5/3 , —1.333 + 4/3)T
= (0.001/3, 0.001/3)T

Therefore, the value 0.001/3 could be taken as a measure of the deviation, or,
alternatively, the sum of deviations in both variables, namely 0.002/3, could be chosen,
etc ... In general, how to measure this deviation and in what form is one
question, the answer to which necessitates the introduction of the concept of
norm.

1.2 Norms of Vectors and Matrices

The norm of a vector is introduced here to provide a measure of the vector’s
magnitude exactly analogous in concept to that of absolute value for a complex
number. The norm of a vector x, denoted | x|, is a non-negative scalar function of x
satisfying the following set of axioms

x| >0, Vx # 0  (Positivity)
lex( = lef - x|l (Homogeneity)
lx + »I < x| + [yl (Triangular inequality)

In general, a scalar function ||-|| satisfying the above axioms qualifies as a norm.
The reader can exercise in showing that the following function, termed the
Holder norm, and stated as

n 1/p
IIXH,,=<ZIX,-|”> . ezt
i=1

qualifies as a norm of x. For a proof of the validity of the triangular inequality for this
norm, the reader is referred to Deif (1982) for p assuming integer values. For p assum-
ing general values, the reader may refer to Beckenback and Bellman (1965). In the
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special case where p = 2, the general norm function yields the well known Euclidean
norm ||-[|, or |||/, which gives the length of a vector in analytical geometry. Other
widely used forms of the norm function are

[xll, = Z|Xi|7 for p=1

and

X llo = miax |x;|, for p— oo

Applying each of the foregoing versions of norm to a vector given by
x=@,—23+)", i=})—1

would yield

Ixl, =1+ 2+ )/10=3+ /10
Ixll, =)1+4+10=]/15
Ixll., = /10

Likewise, the norm of a square matrix 4 is defined as a nonnegative scalar
function noted ||4| and satisfying the following axioms

4] > 0, V4 # 0
ledll = lel |4]

I4 + Bl = [l4] + [IB]
4B = |l4] 1Bl

Again, many functions could be found that qualify as matrix norms, according to the
above rules, e.g.

lAllr = /Y |ai]? (Frobenius norm)
i3

| Ally = n - max |a;; (Maximum norm)
L,J
| All; = max ) |a;] (Column norm)
99
|A]l, = max ) |a;] (Row norm)
i 7

Some have even more properties than those described by the axioms. The last two
norms defined above — Row and Column norms — may for instance be
subordinated to a corresponding vector norm; that is for every matrix A one can
always find a vector x such that

lAx] = 141 llx]
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(cf. Young and Gregory (1973); Deif (1982)). Many matrix norms are consistent
with vector norms, e.g. the Frobenius matrix norm with the Euclidean vector norm,
meaning that they satisfy the relation

x| = 141 llx]

However, the equality part of a consistency relation is only verified for specific
configurations of 4 and x, whereas for the Row and Column matrix norms, each
matrix 4 can be subordinated to at least one vector norm | x]|.

In virtue of this additional property, subordination to a vector norm, the row and
column norms — and all norms analogous in this respect — are termed bounds,
or better still, least upper bounds (lub). This means that

141, = lub, (4) = sup ¥l
’ ’ >l
In the cases where p = 1,00 in the above relation, we obtain respectively the

formentioned Column and Row norms. As an example, if

1 0 —1
A=] -3 5 4
2 2 0
then
41, =7, 41, = 12

The derivation of lub(4) necessitates the use of a vector x, whence some authors
refer to it as the induced matrix norm. If we consider the Frobenius norm, noted
4]l (and held as the matrix analogue of the Euclidean length of a vector), as
compared to its corresponding induced norm-version (called the spectral norm)
given by

”AHZ == l/ lmax(A*A)

where A stands for the largest eigenvalue, we find that
I4ll, = 14|,

This characteristic makes induced matrix norms widely used in relation to error
analysis, as they set tighter bounds.

Usually, authors do not differentiate in notation between both types of norms,
unless the need rises for the exclusive use of one. In this text, the analytical
expressions derived will be valid for nearly all norms, the bounds set by their
numerical values being tighter or looser according to the type of norm used.
Furthermore, as norms were devised to quantify and compare magnitudes of
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vectors and matrices, we may settle as analysis proceeds for using the popular

lazy quotation: for some norm — as many authors incidentally do. Also, | A
will denote any matrix norm, including the cumbersome notation lub (A), further
replaced by HAHIa HA”Za fes 9 HA”OO

These definitions of norms, already so well known and frequently used in
functional analysis, were employed in 1950 by Faddeeva, in the context of proofs
of convergence. Faddeeva defined vector and matrix norms independently, linking
them with the concepts of consistency and subordination. The Frobenius norm is
called the absolute value of the matrix by Wedderburn (1934), who in turn traces the
idea back to Peano.

Another type of norm, the Dual norm, was introduced by von Neumann (1937)
to be treated axiomatically by many authors, see for instance Stoer (1964). The
Dual norm of a vector u, noted ||u||®, is defined by

[<u - x)|

Jull? = sup 21

11

For example, for the vector
w'=(1,-2,3+1), i=)—1"
the dual norm is given by

||LlnD = upM: up |x1 = 2X2 + (3+ i)x3'
1 x zi:lxi| x |X1,+]x2|+|x3|

= /10, taking x, = 0; x5 =0; x; =1

On the other hand

u:x
|]u||g=supu:1+2+m=3+m

max | x; |

i

taking x; = 1; X, = —1; x3:(3~i)/]/10; z’=]/—1.
This concept of Dual norms is no more than a direct application of Holder’s
inequality, stated as

n n 1/p n 1/q
Z lux;| < <Z l“i|p> (Z Ixi|q>
i=1 =i =1

where u; and Xx; are two sets of numbers; i = 1,2, ..., n; and

Ip+1ljg=1, p=1

In fact, if we allow x, to vary, there will surely exist a homogeneous configuration of x
for which the equality strictly holds. In that case lulp = [ull, and vice-versa.
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What is most interesting for our purposes is however the application of the concept
of Dual norm to find the value of lub (uv*), uv* being a matrix

fluv*x| |v*x | ul
=sup ————
(B = lx]

Other similar dual matrix norms can also be derived. The reader interested in further
information is referred to Stoer (1964), who also deduced some further properties of
dual norms as compared to usual norms.

Returning to the system of linear equations

lub (uv™) = sup = Jlul| fo]”

Ax =b

we recall having stated that solving for x with an accuracy depending on the used
computing machine always yields the residual vector r

r=Ax — b

This vector r should in some way give an indication of the accuracy of Xx.
Writing

Ax + Ax) —b=r
x = A~ 'b being the system’s exact solution, we get

AAx =r

or

ie.

1Ax]] = 471 < 1A Il

so that
Nax] _ 1ATIEL A T
< = = [|A4]l || 4 —
= Tl = g ter - ATy

From this, we can conclude that the magnitude of the relative error in the solution x
is bounded by the norm of the residual vector r times the quantity || A| |4~ !|. This
latter quantity is termed the condition number of A (noted cond (4)). It plays a vital
role in assessing the numerical stability of algorithms, and deserves to be discussed
separately. For the time being, let us just clarify the concept by a practical
example. Considering the same example discussed before, we will solve

IR
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using a four-digit machine with fixed-point arithmetic. Then

%, =1667, %, = —1333

and
¢ b 2 1 1.667 2 _ 0.001
re A _[1 2 || =1.333] " | =17 | o001
Meanwhile
e 2/3 —]/3]
—1/3  2/3
giving

cond (4) = ||4] |47"] =3
Hence, using the /,-norm, we get

IAx] _
I =

—gg Il
4| 114 ”m = 3x0.002/3 = 0.002

Now if we use the exact value of x
Ax = (0.00033 ..., 0.00033 ...)T

we get

[ Ax]l

i = 0.00033 ...x2/3 = 0.00022 ...
X

which is of course smaller than the foregoing upper bound. In both cases, the error
was small, because — as we will be explaining shortly — A4 is well-conditioned.

Furthermore, we notice that the error in both %, and X, does not exceed
5x107* This is simply due to the fact that we used a three-decimal-place
precision with the third decimal place rounded according to whether the fourth
decimal place is greater or smaller than 5. In this specific example, the exact
solution is

x, = 5/3 = 1.66666 ...

1

x, = —4/3 = —1.333333 ...

2

which yielded after rounding-off

x, = 1.667 x, = —1.333

2
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By cancelling the fourth decimal place without knowing its value, we have induced an
error of 0.0005 at most. For a number displayed with ¢ decimal places, the

1 . .
error would likewise not exceed 5x 10771 = 3 x 107", Most calculating machines

use floating-point arithmetic for minimal error and better accuracy. The reason behind
this becomes clear when a number like 125.7235124 is to be represented in a ten-digit
machine. The inherent error does not exceed 5 x 10~ 8, but its absolute value is variable,
depending on the place of the decimal point. For numbers between 1 and 9.99 ...
inclusive, the error will not exceed 5 x 10™1°: however it is not so readily determinable
for other numbers. The introduction of floating-point arithmetic simplified this
issue by setting the accuracy of the machine itself. Any number is stored as

cx 107, 10 > ] = 1 (normalized floating-point: 1 > |c| = .1)

The number c is called the mantissa, and has as many digits as the machine itself.
The number b is the exponent. The figure set forth before can thus be represented as
125.7235124 — the error being 5x 10™% — or as 1.257235124x 10> — the error
being now 5x107'x 10> = 5x107%. The accuracy of the machine is to the
nearest 5x 107 '°, and for a number a, the error is at most as large as 5x 10719 x |a.
For a machine with a ¢-digit mantissa, the error becomes 5x 107" x |a|.

Now, supposing a matrix 4 is to be be processed on the computer, what would
be the maximum error in the norm of 4 due to rounding-off? In other words,
what is the bound for |4 + AA4| — || 4| due to rounding-off? Since the error in a;j
is less than 5x 107" x |a;;| (note that sometimes only part of the machine’s mantlssa
is displayed), then [[A4| < 5x 1077 4|. While assuming such error to be less than
5x 107" x max |a;| for a;; # 0 and zero for a;; = 0 (see Rice (1981), p. 136), we get

LJ
1A+ AA|| —[JA||| < |44 <5 x 107" x n x max | a;

el
But we have that

Al = max |a,|
whence

4 + 44| — | 4]
Al

<5x107"

For instance, a matrix 4 of order n processed on an HP-15C calculator — having
a ten -digit mantissa — has an error |AA|| less than 5x 10~ 1° xn||A| (i.e. less than
n||lAl).

1.3 Condition Number and Nearness to Singularity

The condition number of square matrix 4, noted cond (4), is a nonnegative real
scalar given by

cond (4) = [ 4] 47"



