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Preface

The 2007 IEEE International Workshop on Analysis and Modeling of Faces and
Gestures (AMFG) is the third workshop of its type organized in conjunction with
ICCV, this time in Rio de Janeiro, Brazil. Our primary goal is to bring together
researchers and research groups to review the status of recognition, analysis and
modeling of face, gesture, activity, and behavior; to discuss the challenges that
we are facing; and to explore future directions.

This year we received 55 submissions. Each paper was reviewed by three
program committee members. The whole reviewing process was double blind.
However, due to size limit, we were only able to accommodate 22 papers, among
which 8 are orals and 14 are posters. The topics covered by these accepted
papers include feature representation, 3D face, robust recognition under pose
and illumination variations, video-based face recognition, learning, facial motion
analysis, body pose estimation, and sign recognition.

A special word of thanks goes to Dr. Feng Zhao, our organizing chair, for his
dedication and great efforts in maintaining both the online submission system
and workshop website and in handling most of the author contacts. We are
indebted to the advisory committee members for their valuable suggestions and
to the program committee members for their hard work and timely reviews.
Finally, we thank Cognitec System GmbH and Siemens Corporate Research for
their sponsorship.

October 2007 S. Kevin Zhou
Wen-Yi Zhao

Xiaoou Tang

Shaogang Gong
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Learning Personal Specific Facial Dynamics for Face
Recognition from Videos

Abdenour Hadid!, Matti Pietikdinen!, and Stan Z. Li2

! Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland
http://www.ee.oulu. fi/mvg
2 Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun Donglu
Beijing 100080, China

Abstract. In this paper, we present an effective approach for spatiotemporal face
recognition from videos using an Extended set of Volume LBP (Local Binary Pat-
tern features) and a boosting scheme. Among the key properties of our approach
are: (1) the use of local Extended Volume LBP based spatiotemporal description
instead of the holistic representations commonly used in previous works; (2) the
selection of only personal specific facial dynamics while discarding the intra-
personal temporal information; and (3) the incorporation of the contribution of
each local spatiotemporal information. To the best of our knowledge, this is the
first work addressing the issue of learning the personal specific facial dynamics
for face recognition.

We experimented with three different publicly available video face databases
(MoBo, CRIM and Honda/UCSD) and considered five benchmark methods
(PCA, LDA, LBP, HMMs and ARMA) for comparison. Our extensive experi-
mental analysis clearly assessed the excellent performance of the proposed ap-
proach, significantly outperforming the comparative methods and thus advancing
the state-of-the-art.

Keywords: Facial Dynamics, Local Binary Patterns, Face Recognition, Boosting.

1 Introduction

Psychological and neural studies [1] indicate that both fixed facial features and dy-
namic personal characteristics are useful for recognizing faces. However, despite the
usefulness of facial dynamics, most automatic recognition systems use only the static
information as it is unclear how the dynamic cue can be integrated and exploited. Thus,
most research has limited the scope of the problem by applying methods developed for
still images to some selected frames [2]. Only recently have researchers started to truly
address the problem of face recognition from video sequences [3,4,5,6,7,8,9].

In [3], an approach exploiting spatiotemporal information is presented. It is based
on modeling face dynamics using identity surfaces. Face recognition is performed by
matching the face trajectory that is constructed from the discriminating features and
pose information of the face with a set of model trajectories constructed on identity
surfaces. Experimental results using 12 training sequences and the testing sequences of
three subjects were reported with a recognition rate of 93.9%.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 1-15, 2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 A. Hadid, M. Pietikdinen, and S.Z. Li

In [4], Li and Chellappa used the trajectories of tracked features to identify persons in
video sequences. The features are extracted using Gabor attributes on a regular 2D grid.
Using a small database of 19 individuals, the authors reported performance enhance-
ment over the frame to frame matching scheme. In another work, Zhou and Chellappa
proposed a generic framework to track and recognize faces simultaneously by adding an
identification variable to the state vector in the sequential important sampling method [5].

An alternative to model the temporal structures is the use of the condensation al-
gorithm. This algorithm has been successfully applied for tracking and recognizing
multiple spatiotemporal features. Recently, it was extended to video based face recogni-
tion problems [6,5]. More recently, the Auto-Regressive and Moving Average (ARMA)
model [10] was adopted to model a moving face as a linear dynamical system and per-
form recognition [7].

Perhaps, the most popular approach to model temporal and spatial information is
based on the Hidden Markov models (HMM) which have also been applied to face
recognition from videos [8]. The idea is simple: in the training phase, an HMM is
created to learn both the statistics and temporal dynamics of each individual. During
the recognition process, the temporal characteristics of the face sequence are analyzed
over time by the HMM corresponding to each subject. The likelihood scores provided
by the HMMs are compared. The highest score provides the identity of a face in the
video sequence.

Unfortunately, most of the methods described above use spatiotemporal representa-
tions that suffer from at least one of the following drawbacks: (1) the local information
which is shown to be important to facial image analysis [11] is not well exploited with
holistic methods such as HMMs; (2) while only personal specific facial dynamics are
useful for discriminating between different persons, the intra-personal temporal infor-
mation which is related to facial expression and emotions is also encoded and used;
and (3) equal weights are given to the spatiotemporal features despite the fact that some
of the features contribute to recognition more than others. To overcome these limita-
tions, we propose an effective approach for face recognition from videos that uses local
spatiotemporal features and selects only the useful facial dynamics needed for recog-
nition. The idea consists of looking at a face sequence as a selected set of volumes (or
rectangular prisms) from which we extract local histograms of Extended Volume Local
Binary Pattern (EVLBP) code occurrences. Our choice of adopting LBP (Local Binary
Patterns) for spatiotemporal representation is motivated by the recent results of LBP ap-
proach [12] in facial image analysis [13] and also in dynamic texture recognition [14].

In this paper, noticing the limitations of volume LBP operator in handling the tem-
poral information, we first extend the operator and derive a rich set of volume LBP
features denoted EVLBP. Then, instead of ignoring the weight of each feature or sim-
ply concatenating the local EVLBP histograms computed at predefined locations, we
propose an effective approach for automatically determining the optimal size and lo-
cations of the local rectangular prisms (volumes) from which EVLBP features should
be computed. More importantly, we select only the most discriminative spatiotemporal
EVLBP features for face recognition while discard the features which may hinder the
recognition process. For this purpose, we use AdaBoost learning technique [15] which
has shown its efficiency in feature selection task. The goal is to classify the EVLBP
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based spatiotemporal features into intra and extra classes, and then use only the extra-
class information for recognition. To the best of our knowledge, this is the first work
addressing the issue of learning personal specific facial dynamics for face recognition.

2 Extended Volume LBP Features (EVLBP)

The LBP texture analysis operator, introduced by Ojala et al. [16,12], is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in a
local neighborhood. It is a powerful means of texture description and among its prop-
erties in real-world applications are its discriminative power, computational simplicity
and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3 x 3 neighborhood of each pixel with the center value and considering the result as a
binary number. Fig. 1 shows an example of an LBP calculation. The histogram of these
28 = 256 different labels can then be used as a texture descriptor. Each bin (LBP code)
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc.

The calculation of the LBP codes can be easily done in a single scan through the
image. The value of the LBP code of a pixel (z., y.) is given by:

P-1
LBPpr =Y s(gp — 9c)2" (1)

p=0

where g. corresponds to the gray value of the center pixel (z., y.), g, refers to gray
values of P equally spaced pixels on a cicrle of radius R, and s defines a thresholding

function as follows:
_Jlifzx > 0
s(z) = {0, otherwise. )

The occurrences of the LBP codes in the image are collected into a histogram. The clas-
sification is then performed by computing histogram similarities. For an efficient rep-
resentation, facial images are first divided into several local regions from which LBP
histograms are extracted and concatenated into an enhanced feature histogram. In such
a description, the face is represented in three different levels of locality: the LBP la-
bels for the histogram contain information about the patterns on a pixel-level, the labels

Threshold Multiply
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LBP=1+4+16+32=53

Fig. 1. Example of an LBP calculation
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(b)

Fig.2. (a): A face sequence is seen as a rectangular prism and (b): An example of 3D neighbor-
hood of a pixel in Volume LBP

are summed over a small region to produce information on a regional level and the re-
gional histograms are concatenated to build a global description of the face. This locality
property, in addition to the computational simplicity and tolerance against illumination
changes, are behind the success of LBP approach for facial image analysis [13].

The original LBP operator (and also its later extension to use neighborhoods of dif-
ferent sizes [12]) was defined to deal only with the spatial information. For spatiotem-
poral representation, Volume LBP operator (VLBP) has been recently introduced in
[14]. The idea behind VLBP is very simple. It consists of looking at a face sequence
as rectangular prism (or volume) and defining the neighborhood of each pixel in three
dimensional space. Fig. 2 explains the principle of rectangular prism and shows an ex-
ample of 3D neighborhood for Volume LBP.

There are several ways of defining the neighboring pixels in VLBP. In [14], P equally
spaced pixels on a circle of radius R in the frame ¢, and P + 1 pixels in the previous
and posterior neighboring frames with time interval L were used. This yielded in VLBP
operator denoted VLBP, p r. Fig. 3 (top) illustrates an example of VLBP operator with
P=4 and R=1.

We noticed in our experiments on face recognition from videos that VLBP, p r does
not encode well enough the temporal information in the face sequences since the oper-
ator considers neighboring points only from three frames and therefore the information
in the frames with time variance less than L are missed out. In addition, a fixed number
of neighboring points (i.e. P) are taken from each of the three frames, yielding in a less
flexible operator with large set of neighboring points. To overcome these limitations, we
introduce here an extended set of VLBP patterns by considering P points in frame ¢,
Q points in the frames ;11 and S points in the frames ;42 . This yields in Extended
Volume LBP (EVLBP) operator that we denote by EVLBP, (p g s),Rr-

By setting

§=0 3

EVLBPy, (pg,s),r Will be equivalent to VLBP., p r. Therefore, VLBP p r can be
seen as a special case of EVLBPy, (p ¢ 5) r- Fig. 3 (bottom) illustrates an example
of Extended Volume LBP operator with P=4, ()=S=1 and R=1 (EVLBP, (41 1)1),
while Fig. 3 (top) illustrates an example of VLBPy, 4 ; operator which is equivalent to
EVLBPy, (45,0),1-

{Q=P+1
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Fig.3. TOpI VLBPL,.»L]. Bottom: EVLBPL.(4,1.1),1

Once the neighborhood function is defined, we divide each face sequence into sev-
eral overlapping rectangular prisms of different sizes, from which we extract local his-
tograms of EVLBP code occurrences. Then, instead of simply concatenating the local
histograms into a single histogram, we use AdaBoost learning algorithm for automat-
ically determining the optimal size and locations of the local rectangular prisms, and
more importantly for selecting the most discriminative EVLBP patterns for face recog-
nition while discarding the features which may hinder the recognition process.

3 Learning EVLBP Features for Face Recognition

To tackle the problem of selecting only the spatiotemporal information which is use-
ful for recognition while discarding the information related to facial expressions and
emotions, we adopt AdaBoost learning technique [15] which has shown its efficiency
in feature selection tasks. The idea is to separate the facial information into intra and
extra classes, and then use only the extra-class EVLBP features for recognition.

First, we segment the training face sequences into several overlapping shots of F
frames each in order to increase the number of training data. Then, we consider all
combinations of face sequence pairs for the intra and extra classes. From each pair
(sequencel, sequence?), we scan both face sequences with rectangular prisms of dif-
ferent sizes. At each stage, we extract the EVLBP histograms from the local rectangular
prisms and compute the x? (Chi-square) distances between the two local histograms.
x? dissimilarity metric for comparing a target histogram £ to a model histogram 1) is
defined by:

o (& — %)

2
)=y =L 4
x“(&,v) 2T, 4)

where [ is the length of feature vector used to represent the local rectangular prisms.
Thus, for each pair of face sequences, we obtain a feature vector X; whose elements
are x? distances. Let us denote Y; € {+1, —1} the class label of X; where ¥; = +1



