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Preface

During the period 1958-1971 there appeared the three volumes of the
monumental treatise “Linear Operators™ by N. Dunford and J. T. Schwartz.
This work contains a wealth of material. The purpose of my book is to develop
this research further in one particular direction: namely the study of various
classes of linear operators on a complex Banach space which possess a rich
spectral theory.

General spectral theory is developed in Part One. The material presented
is very much influence by the aforementioned work of N. Dunford and J. T.
Schwartz and by the book “Introduction to Functional Analysis™ by A. E.
Taylor.

Part Two contains two chapters. The first relies heavily on ideas of
F. F. Bonsall and V. I. Lomonosov to simplify the usual presentation of the
spectral theory of compact operators and of the theory of superdiagonal forms
for compact operators due to J. R. Ringrose. In Chapter 3 we present the
theory of Riesz operators initiated by A. F. Ruston and later developed by
T.T. West.

Part Three is a very brief section containing all the properties of hermitian
operators on a Banach space required for later sections of the book.

Part Four is the longest section of the book and is devoted to the theory of
prespectral operators. It includes brief sections on spectral operators and
normal operators on Hilbert space that contain proofs of the basic theorems
significantly simpler than those found in existing textbooks.

In Part Five we develop the theory of well-bounded operators initiated
by D. R. Smart and developed by J. R. Ringrose and others.

My thanks are due to Professor John Ringrose on two counts. First. as
my research supervisor in the early 60s he first aroused my interest in many
of the topics discussed in this book and second because Chapters 2. 15 and 16
are heavily dependent on his research papers on compact and well-bounded
operators. | should also like to express my gratitude to Professor Earl
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Berkson for many valuable discussions on hermitian operators, prespectral
operators and well-bounded operators. I am indebted to Dr Philip Spain for
submitting to me several of his unpublished manuscripts and for reading and
criticizing an earlier version of Part Three of this book.

My thanks are due to Dr Trevor West for reading and criticizing an earlier
version of Parts One and Two of this book. Also, I am very grateful to Dr
Alastair Gillespie for reading and criticizing an earlier version of Part Four
of this book and for helping me very considerably in writing Chapters 18
and 20 by sending to me several of his unpublished manuscripts.

Finally. I am much indebted to Miss Daphne Davidson for her patient and
very careful work in producing the typescript of this volume.

University of Glasgow H. R. DOWSON
March, 1977



Note to the Reader

It will be assumed that the reader of this book has a basic knowledge of
functionalanalysisascould be acquired from “Elementsoffunctional analysis™
by A. L. Brown and A. Page. We assume also a knowledge of Gelfand theory
in commutative Banach algebras and of elementary spectral theory in
general Banach algebras. Our standard reference for these topicsis “Complete
Normed Algebras™ by F. F. Bonsall and J. Duncan. For the results on measure
theory that we shall need, the reader is referred to “Measure Theory™ by
P. R. Halmos. It will be assumed also that the reader is familiar with the
theories of vector-valued holomorphic functions and of integration of vector-
valued functions presented in Chapter Il of “Lincar Operators™ by N.
Dunford and J. T. Schwartz. However, the deeper results, derived from this
theory, on the representation of weakly compact linear mappings are specific-
ally recalled.

Theorems, propositions, lemmas, corollaries, definitions and notes are
numbered consecutively. For example, Theorem 4.17 refers to the seventeenth
item in Chapter 4.

We have divided the bibliography into two sections. The works in
“General background reading™ are referred to in the text by a number alone.
Other references are cited by giving the author’s name followed by a number.

A*



Some Terminology, Notation and Conventions Used
Throughout This Book

Throughout. X denotes a non-zero complex Banach space. otherwise
arbitrary unless the contrary is explicitly stated. H denotes a non-zero
complex Hilbert space. otherwise arbitrary unless the contrary is explicitly
stated. Operator means “bounded linear operator™. The Banach algebra of
operators on X is denoted by L(X). The dual space of X is denoted by X*.
We write {x. ¢ for the value of the functional ¢ in X* at the point x of X
In a Hilbert space setting this notation is also used for the inner product of
two vectors. The adjoint of an operator Ton X is denoted by T*. A similar
notation is used in a Hilbert space setting for the Hilbert adjoint of an
operator. The annihilator Y of a closed subspace Y of X is the set

fpe X*:(y,¢p> =0 forall yin Y.
If Yisa closed subspace of H, then Y* denotes the orthogonal complementof Y.

R denotes the set of real numbers

C denotes the set of complex numbers
Z denotes the set of integers

N denotes the set of positive integers

Throughout. scalars and functions are complex-valued unless the contrary
is explicitly stated. < is used for “is contained in”. while < 1is reserved for
“is strictly contained in™. {a| denotes the set consisting of the point « alone.
7(t: z) denotes the characteristic function of the set t evaluated at the point -.
Occasionally the characteristic function of 7 is denoted by 7. C(K) denotes
the Banach algebra of continuous complex-valued functions on the compact
set K under the supremum norm. £ denotes the g-algebra of Borel subscts of

the complex plane.
Let 4 = X. We denote the norm closure of 4 in X by 4 or cl A. If Yis

a closed subspace of X, the quotient space of X by Yis denoted by X /Y. Let

X1
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TeL(X)and let TY < Y. The restriction of T to Y is denoted by T|Y and
the operator induced on X/Y by T'is denoted by T,.

If o/ < L(X).then ./’ denotes the commutant of ./ and .«/"" denotes the
bicommutant of /. Let Te L(X). We write N(T) for the null-space of the
operator Tand R(T)for therangespace T X.a(T)and p(T)denoterespectively
the spectrum and resolvent set of T. .#(T) denotes the family of complex
functions analytic on some open neighbourhood of a(T). ¢,(T). a(T).
a,(T), ¢,(T) denote respectively the approximate point spectrum, the con-
tinuous spectrum, the point spectrum and the residual spectrum of T. v(T)
denotes the spectral radius of T.

LetJ = [a. b] be a compactinterval of R. Let BV/(J) be the Banach algebra
1

of complex-valued functions of bounded variation on J with norm || |

defined by
WAl = [ /()] + var(f.J)  (fe BV(J)),
where var(f. J) is the total variation of f over J.

Let AC(J) be the Banach subalgebra of BV(J) consisting of absolutely
continuous functions on J. For f'in AC(J)

b
Al = 1w + j 0]

Let NBV(J)be the Banach subalgebraof BV/(J)consisting of those functions
fin BV(J) which are normalized by the requirement that f is continuous on
the left on (a. b].
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Part 1

GENERAL SPECTRAL THEORY






1. General Spectral Theory

In this chapter. we develop the spectral theory of a bounded linear operator
on anon-zero complex Banach space. The concepts ol spectrum and resolvent
set are introduced and the various subdivisions of the spectrum are studied. A
functional calculus for such operators is introduced. The theory of ascent and
descent of linear operators is developed. Various results on the spectra of
restrictions of operators to closed invariant subspaces are proved.

Let T e L(X).

Definition 1.1. The resolvent set p(T) of T 1s the set of complex numbers 2 for
which 21 — T is invertible in the Banach algebra L(X).

Definition 1.2. The spectrum o(T) of T is defined to be Cip(T).
Definition 1.3. The function

Jos (2l —T) ! (rep(T))
is called the resolvent of T.

THEOREM 1.4. Let T € L(X). The resolvent set p(T) is open. Also the function
4= (2 — T)"Vis analytic in p(T).

Proof. Let 2 be a fixed point in p(T) and let g be any complex number with
| < (21 — T)"'"| '. We show that 2 + wep(T). Consider the series

Y (= — T) * " Since w2l — T) ' < I this series converges in
k=0
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the norm of L(X). Denote its sum by S(x). Then
[(A+ @I —T]S(w = (A — T)S () + uS(p) =1,
S [(2+ Wl —=T] =S —T)+ uS(u) = 1.

It follows that 4 + g e p(T) and the function gt — S(u) = [(4 + w1 — T] !
1s analytic at the point pu = 1.

COROLLARY 1.5. Let T € L(X). If d(4)is the distance from 4 to the spectrum o(T)
then

I

U —-T) Y = —
s -1 =

(Aep(T)).

T herefore
domain of analyticity of the resolvent.

(41 — T) Y| - » as d(7) = 0. and the resolvent set is the natural

Proof. In the course of proving Theorem 1.4 it was shown that if
lu| < (A1 = T)"'| " then Z+ pep(T). Hence d(7) = (21 — T) ' "
from which the statements follow.

THEOREM 1.6. Let T € L(X). Then o(T) is compact and non-empty.

Proof. For |2 > || T|. the series )  T"/A""" converges in the norm of L(X).
n=0
Let S(4) denote its sum. Then

(Al = T)S(4) = Sl —T) =1
Hence
Sy =1 =Ty (Al > |IT]).
It follows that (T) is bounded. By Theorem 1.4, o(T) is closed. Hence a(T') is
compact. It remains to show that the spectrum is non-empty. If o(T) = &,

then the resolvent of T is an entire function. Since (Al — T) ' is readily seen
to be analytic at infinity, it follows from Liouville’s theorem that (A1 — T) !
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z

is a constant. Hence the coefficient of 2~ ' in the Laurent series ) T7/2"""
n=0
vanishes, so that I = 0. which contradicts the assumption X # {0}. This
completes the proof.
Definition 1.7. Let T € L(X). The spectral radius v(T) of T is defined by
WT) = sup{|i|: Lea(T)].

PrOPOSITION 1.8. Let T € L(X). The spectral radius of T has the properties

| n||1/n
[T < |

WT) = lim T|.

n

Proof. In the course of proving Theorem 1.6 it was shown that

=Ty =Y Tt (i > T

n=0

and so v(T) < | T|. By Theorem 1.4, the resolvent is analytic in p(T). Let
xe X, ye X* Then the function i — (Al — T) ' x,y) is analytic for
|Z] > v(T). Hence the singularities of this function all lie in the disc {2:|/] <
WT)}. Thus the series Y {z "' T"x,y) converges for |£| > v(T) and for

n=0
such 2 we have

(T x. )

/"n+l

n
The principle of uniform boundedness shows that there is M, such that
[T < M, < =
and hence that

limsup | 77" < |/].

n
Since / is an arbitrary number with |Z| > vw(T) it follows that

lim sup | 7" < W(T).

n
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To complete the proof we show that »(T) < lim inf | T" " Observe that

if 2ea(T) then 2" e a(T"): for the factorization

(2" — 1" =20 — TVYP(T) = P(Tysl = T)

shows thatif (2"l — T"yhasaninversein LX) sowill 21 T.'I‘llux\/} | T

and hence

supilz ety < 17

vl < limont 1t

n

Definition 1.9, Let T e LX) T is said to be quasinilpotent if and only if
lim 7" ' =0,

n

ProrvosirioN 110, Let T e LX),
(1) T is quasinilpotent if and only if v(T') — 0.
() T is quasinilpotent if and only if a(T) = 0.

Proof. These results follow at once from Definition 1.7 and Proposition 1.~.

ProvosirioN 11 Let T e LIX). The following identity. known as the resolvent
cquation. is valid for crery paiv of points 2. pcin p(T).
(ol Ty Y Ty e =Ty T

Proof. Obscrve that

(il — Tyal — Tyl — 1) " —qd = 1) ") =qd =Ty =120 — T

(i — Tysd — Tysd —T)y " —qd — 1) " = — 7)1

Multiply both sides of this cquation by (41 — 1) 'l — 1) ' to complete
the proof.

Let Te L(X). There is an operator T#in LX) called the adjoint of T such
that

CTx vy = THy) (ve X.yve X¥).
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The map T — T* is an isometric linear map of L(X) into L(X*) with the
additional property

(AB)* = B*A* (A, Be L(X)).

PROPOSITION 1.12. Let T € L(X). The spectrum of T* is equal to the spectrum
of T. Moreover

(Al = T) ") = (Al — T*) ! (e p(T)).

Proof. If T~ ' exists and is in L(X) then
¢

THT 'y = (T ' T)* = I* — (TT 'y — (T ")*T*.

Thus (T*) ' exists. is in L(X*). and (T*) ' = (T ')*. Conversely. if (T*) !
exists and is in L(X*) then, by what has already been proved, (T**) !
and is in L(X**). Thus T** is a homeomorphism of X** onto itself. It is also
an extension of T. Hence T is one-to-one and T X is closed. It only remains to
show that TX = X. f TX # X. thereis f in X* with f # 0 and

exists

(Tx. [>=(x.T> =0 (xeX)

Hence T*f = 0, contradicting the assumption that T* is one-to-one. The
theorem follows easily.
We now introduce some important subsets of the spectrum.

Definition 1.13. Let T € L(X). Define

a,(T) = {2eC:2l — T is not one-to-onej
o(T) = {2eC: 4l — T is one-to-one,
(2 —T)X =Xbut(2l = T)X # X|:
o(T) = {4eC: il — T isone-to-onebut (I — T) X # X|.
a(T). o(T) and o (T) are called respectively the point spectrum. the

continuous spectrum and the residual spectrum of T. Clearly ¢ (T). 6 (T) and
6,(T) are disjoint and

olT)=0,T)ua(T)ua,T)



