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ABSTRACT

P-adic logarithms are used to translate localization
sequences, involving multiplicative groups of units, to
simpler additive descriptions of D(ZG) and Wh’'(G) for
a pgroup G. When G is a 2-group, applications include
explicit computations of D(ZG) in many cases, a general

formula for ID(ZG) |, a description of the Tate
cohomology of Wh’(G) wunder the involution induced by an
orientation G — (11}, and results on representing

elements of Wh’'(G) by units.

Key words and phrases: Whitehead groups, projective class
group, p-adic logarithm, p-group, localization sequences
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INTRODUCTION

For a finite group G, various localization sequences have been used to

describe the groups

D(ZG) = Ker[K,(ZG — K, (M)]

(where M 2 ZG 1is a maximal order in @QG); and

Wh'(G) = Wh(G)/SK, (ZC) = K, (ZG)/<tg,SK(ZG)> = K, (ZG)/torsion.

These are simplest when G 1is a p-group for some prime p, but even in that
case one must work with kernels and cokernels of maps between multiplicative
groups; and calculations can be quite complicated even when generators and
relations are known for all groups involved. The goal of this paper is to
work out a procedure for using logarithms to translate the localization
sequences into sequences involving additive groups. This procedure is
sketched in Section O.

The most interesting consequences dealt with here all involve 2-groups.

For a 2-group G, the main results include:

(1) A formula for |ID(ZG)| (Theorem 5.5). For example (Theorem 5.7),

if G is abelian, IG| = 2N, and r, denotes the number of cyclic subgroups

k
k M
of order 2", then |D(ZG)| = 2" where

1
M = 5[3N + r (N-4) + r (2N-8) + ry(3N-15) + r (5N-27) + ...].

(2) If RG is isomorphic to a product of matrix rings over R, then
D(ZG) = 2AQ(G) (Proposition 5.2). Here, AQ(G) denotes the Artin cokernel

i.e., the rational representation ring of G modulo the subgroup generated
P

by cyclic induction), and 2AQ(G) means multiples of 2.
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(3) Formulas are derived which relate D(Z[chg]) (any k > 0) to

D(ZG) and related functors of G (Theorem 6.2). In particular, descriptions
are given of D(Z[G xcg]) when G is a dihedral 2-group.

(4) For any x€Wh'(G), x2 is a product of elements induced up from
cyclic subgroups of G, and x is such a product if G 1is abelian (Theorem
4.3).

(5) For any x€Wh’'(G), x2 = [u] for some unit UE(ZG)* (Proposition
4.6). An example is also constructed of a 2-group G such that not every
element of Wh'(G) 1is represented by a unit (Theorem 4.7).

(6) Formulas for ﬁi(Z/Z;Wh'(G)) (i=0,1) are given, when @G is a
product of matrix rings over fields, and the Z/2-action is induced by the
antiinvolution g——*w(g)'g—l on ZG, for any given w: G—{1} (Theorem
4.8).

The general algebraic machinery used to study D(ZG) and Wh’(G) for
p-groups G are developed in Sections 1 to 3 —— and summarized in Section O.
Sections 4 and 5 concentrate on Wh’'(G) and D(ZG), respectively, in the
2-group case. The case of p-groups for odd regular p 1is studied briefly in
Section 7; many of the results on 2-groups listed above are already known (or

not applicable) in the odd p-group case.
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CHAPTER O. SUMMARY OF METHODS

For the sake of easy reference, we first collect the main algorithms for
describing ip@Wh'(G) and D(ZG) for a p—group G, as well as the necessary

definitions. Throughout this section, p denotes a fixed prime.

Definition 0.1. For any p-group G, set:

(a) Wh'(ipc) N Kl(ipc)/(sxl(ipc) x (Ag: xecors(ip)". g€G))
(b) (&) = K,(R ) /K, (%)

where M C Q@G 1is any maximal order containing ZG, and Kl(m)A is the

p-adic closure of the image of Kl(ﬂ) in Kl(ip)(p)'

() Ry(6) = Z8sRy(G), Ry p(G) = Z,8,(Rp(G)/Ry(C)),
where RK(G) denotes the K-representation ring of G.

(d) HO(G;ipG) denotes the free ip-module with basis the set of

conjugacy classes in G: 1i.e, the O-th homology group when G acts on ipG

via conjugation.

(e) torspKl(QG) denotes the subgroup of elements of p-power order.

With this notation, there is for any G an exact localization sequence

0 — ipevm'(c) — Wh'(ipc) £, LXCY) 9, pzc) — o ,

Received by the editors July 7, 1986



2 R. OLIVER and L. TAYLOR

where the first two maps are induced by the inclusions ZG C ipG Cc ﬂp.

The naturality of the above exact sequence, with respect to group
homomorphism, tranfer maps, and the standard involution g — g_l, is
dicussed in Section 1. Note in particular that the boundary map to D(ZG)
possibly commutes with the involution only up to sign (depending on which

convention is chosen for the involution on D(ZG)).

The idea now is to approximate Wh’(ip(G) by HO(G;ipG), and Wp(m)
by ﬁQ(G) x ﬁC/IR(G)’ so that ¢ can be approximated by an additive

homomorphism whose kernel and cokernel are much easier to describe. More

specifically, we show:

Theorem 0.2. (Theorems 3.7 and 3.8) Set € = (—l)p_l, and assume p =2 or
P 1is an odd regular prime. Then for any p-group G, the following diagram

is commutative with exact rows and columns:

0 0o . 0

y
0 — 2 8Wn’ () — Wn'(2,6) —£— W () —9 , p@c) — o

=14 r Jn n

0 — 2 8¥h’ (G) i o Hy(Gi2 ) 8, Ry(G)xRe p(G) — Coker(8) — 0

W (2) v v
(1) 0 — <3 3@ Ly tors K, (€G) — tors K, (€)/{g} — O
0 0 0

The homomorphisms in (1) are defined as follows. Here, for any r >0, Er =

exp(21ri/pr) and Kr = Q(fr) .

(a) T(u) = log(u) - I-l;b(log(u)) for any u€1+J(ipG) (J(ipG) the

Jacobson radical); where ¢(Za1g1) = Zaig}; for any aiGip. g1€G .
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k
®) 6@ = (mal (e, xnd‘jg,(rgo [C(g — £)1)) for any g€C of

order pk.

(c) v([¥],0) = [e,W] € Kl(m) for any QG-module W.

v(O,[tIﬁK v]) = [efr.Vlm] € KI(QG) for any r 2> 1 and any
r

Kr[G]-module V.

a
i A
(d) m(Zaigi) = H(egi) for any ai€Zp, giGG.

(e) ¢ 1is induced by the inclusion <e> x G C (QG)*.
(f) m 1is the unique natural homomorphism such that mnoyp = Bol.

For simplicity, this result has been stated here only in the case where
p 1is regular. The situation for irregular p 1is slightly more complicated,
and is described (in part) in Theorems 3.7 and 3.8 below. We also remark that
J(ipG) is the kernel of the mod-p augmentation 2PG — Z/pL.

The diagram in Theorem 0.2 is, of course, natural with respect to group
homomorphisms: this is immediate from the definitions of the maps involved.
But it is also natural with respect to transfer (restriction) maps for
injections i : H — G, and with respect to the involutions which arise in
surgery theory. The appropriate formulas for restriction or involution on

HO(G;ipG) are in particular worth noting.

(1) A restriction map

Re sg

: HO(G;ZPG) — HO(H;ZpH)
is defined for any pair H C G of finite p-groups (see Theorem 1.4); when
[G:H] = p, this takes the form

p-1
i -1
Zx gx if g€H, x€G-H

Resl(e) = | 0

Pad if g€G~H.
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(2) If G is a 2-group, if W: G — {41} is any homomorphism (i. e.,
any "orientation" of G), and if f: g— m(g)g_l is the induced
antiinvolution, then f_ is defined on HO(G;ipG) by setting

g ! if o(g) = 1
f(2) =

2 =
g -g if w(g) = -1.

The chief problem in the above construction lies in defining
g+ W,(Q6) — Re(6) x Rp () -

When p 1is odd, or when p =2 and QG is a product of matrix algebras over

fields, then ﬁC/R(G) is torsion free, and Mg can be defined directly
using logarithms. In other cases, however, there are elements in Kl(ﬁp) of
finite order which must be sent non-trivally into ﬁE/R(G)' and we have been

unable to discover a direct formula for doing this.

The appearance of torsp(Kl(QG)) to describe Coker(n) seems almost

coincidental, and our only real explanation is that is just happens to work.
It is, however, intriguing to note that m and v are induced by the exact

sequence
A = - =
K () ) b Ry(6) x Rpq(6) — tors K, (@6) — 0

(® 2 ZG is maximal, see Theorem 3.6); and that

IR

Ker(m) torspKl(R) = torspKl(QG) = Coker(ﬁ).

This is similar to the situation for TI: 1if I 1is regarded as being defined
on Kl(lpc)(p)’ then

Ker() 2 tors Ki(Z6) % <e> x &2 = coker(I).

With the above diagram, Wh’(G) and D(ZG) can now be studied via the

isomorphism
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fo: 2,8Wh(G) — Ker[85:Hy(C;2,6) — Ry(C) x Ry p(G)]
and the short exact sequence
0 — D(2ZG) —Ls Coker(8,,) = tors K, (Q6/{4G}) — 0.
These descriptions depend on a good understanding of the square
HO(G;ZPG) E— RQ(G)XRCAR(G)

Y% e (0.3)

exxc?? —C torspKl(m) :
in particular, of BG and Ve (as well as torspKl(m)). Many of the results

in Sections 4, 5, and 6 are proven by using the above definitions directly.

But for results involving specific groups, more efficient methods and formulas

are useful.

If @G = ﬂk A,, where the A, are simple, then we can split 6. = lle, ,
i=1"1 i R G A1

"LA . For any simple A C QG , GA, Vo and LA sit

D=ﬂv,and:.=
G A1 G 1

in a commutative square

(¢] af )
Ho(GiZ,C) —A Ry(A)Rg () = .0, [%5(0) go(gﬁ)
I " (0.4)
‘A

(e)xGab —_— torspKl(A) .
Also, torspKl(A) is described explicitly by:

Theorem 0.5. For any simple @Q-algebra A with center K, the reduced norm

homomorphism defines an isomorphism
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nr: KI(A) — .‘C: = (uFK*: u>0 for any K C R such that

IR@KA is a matrix algebra over H} .

Proof. See Weil [32], Chapter XI, 83, Proposition 3. O

One way to explicitly describe the maps GA and vy in 0.4 is by

comparison with the so-called "basic"” p-groups. When p is odd, these
include only the cyclic groups

n
Cpn=(a|ap =e)

for n2 0. If p=2, in addition to the cyclic groups, we have

n-1

Dihedral: D(2") = {a,b | a2 =e =b%; bab ! =a"1)

(n24)

n-1 n-2

Quaternion: Q(2") = (a,b | a® = e; a> = b%; bab ! = a_l)

(n 23)

n-1 n—2

Semi-dihedral: SD(2") =<a,b | a2 =e=b2;bab l=a® 1)

(n 2 4).

Note that D(8), the dihedral group of order 8 , is not basic.

Recall the relation between the irreducible rational representations of a

finite group G and the Wedderburn decomposition of @QG. Write QG = ﬂl;:lAi'

where the A1 are simple, and let Vi be the irreducible Ai—module. Then

are the irreducible @QG-representations. To each \' we can

Vi,....Vk i

associate a division algebra Di = Endm(Vi) (=EndAi (Vi)). Then Ai =

EndD' (Vi). a matrix algebra over Di'

For each basic p-group G, there is a unique simple summand AG of @G

upon which G acts effectively. The significance of these groups is as
k

follows. If G 1is any p-group, and @G = ”i:lAi' where each Ai is simple

with irreducible representation Vi, then there exist for each 1 subgroups
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Hi <4 Ki C G with the property that Ai and AK/H have the same associated
division algebra (and V1 = Ind]G(_ (Wi) if Wi is the irreducible
1
AK_/H‘—module). Furthermore, for any functor X on Q-algebras satisying
1 1
certain conditions (including the cases X = RQ x RC/[R and X = Wp) , there

is a commutative diagram

2 iTrfﬁ ® proj
x(a6) —1 K @ x(2K,) ® X(QLK,/H, 1)
i
? X(Ai) 0(isomor2hism) N ? X(Al(i - ).

A more precise statement of this is given in Proposition 2.5.

In the theorem and table to follow we describe square (0.4) for G a
basic p-group and A = AG'

Theorem 0.6. Fix a basic p-group G # 1 and let A = AG be the effective

simple component of @G. Recall G = <a> or G = <a,b>, where a generates a

cyclic group of order |G| or %IGI. Define
n-1

(a) p’ = lal and z = aP . Note z generates the unique central subgroup

of order p in G.

(b) W is the simple A-module, and w = [W] 1is the corresponding generator
of RQ(A) (= Zp) s

171

() v, = Ind S, ([C(a—E,

= exp (2wi/p")).

)]) € ﬁm/m(c) for any i€Z with (i,p) =1 (£

(@ X = [(1’1?3:1 ip(vi)] / ( vi-v“p“ »ovgtv_ ot (1) =1 ). Note that

~ 15 1/2) n
xn ~ (Zp)( ¢o(p ).



8 R. OLIVER and L. TAYLOR

(e) A= Hr(D) for some division algebra D. Here, r =1 if G 1is cyclic

or quaternionic; r =2 if G is dihedral or semi-dihedral.

(f) HO(G;ipG) is the free ip—module on the conjugacy classes of

elements of G. The conjugacy classes consist of the following sets:

{am} (G cyclic);

{am,a_m}, (azib), (a21+1b) (G dihedral or quaternionic);

2m+1 _ —(2m+1) 2m _-2m 2i+1
,za }, (a7 ,a a

b {a?'b), (a21*1p)
(G semi-dihedral).

{a

Here, in each case, m€Z is fixed and i€Z varies. We abuse notation and
write 6 of an element rather than a conjugacy class. We describe 6 on at

least one representative for each conjugacy class.

g 6 (ai is listed in the table below only when pfi. To compute 6 ai
A

if pli, apply inductively the formula
< p-1 .
8(a”’) = I e(a'z))

=0

and ¢

Otherwise, RC/A(A)' torspKl(A), GA, Vys A are described by the

following:
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Table 0.7
G 1 G, Gy (P™2) ™l Q2™ sp(2™?)
e e @ QF)  QEFE) QCELI) ace,-£.1)
Re (M) 0 o X 0 X /2X X /(v {~Von-1_)
xw2)2 %2,)%

6(e) w w w 2w w 2w

i
6(a’) - (0] v (0] v v

(1,p)=1 ! 1 1
6(b) - - - w Zv1 (i odd) w
8(ab) - = - w o Iv, (ocice™) 0
tors K (A) <e> {21} <> (11} {1} {21}
v(w) e -1 € = 1 -1
v(v,) - - efi - 1 -1

i n
t(e) € -1 3 1 1 1
t(a) - -1 3 1 1 -1

t(b) = = = -1 1 ~1



CHAPTER 1. LOCALIZATION SEQUENCES AND LOGARITHMS

There are by now various localization sequences in use for describing
D(ZG) (see, e.g [4] or [29]). We start by presenting the one to be used
here.

Throughout the paper, p always denotes a fixed prime. If R =Z or

ip. and G {s any finite p-group, we define

Wh(RG) = K, (RG)/(4g);
Wh' (RG) = K, (RG)/(SK, (RG) x {Ag : Actors RY, g€G}).

As usual, we write Wh(G) = Wh(ZG) and Wh’'(G) = Wh’'(ZG) . Note that when R
= ip , we do not divide out by all units in R (in contrast to, e.g., [30]

and [14]). By [30], Wh’(RG) 1is a free R-module of known (finite) rank.
If A 1is any finite dimensional semisimple @Q-algebra, and if W C A is
a maximal Z-order, then Kl(ﬂp) (ﬂp = ip@zﬂ) is the product of a

pro-p-group and a finite group (see [28]). In particular, Kl(mp)(p) can be

regarded as a ip—module. Using this structure, define
W (A) = Coker[Z 0,k () — K (R ) .].
p() er pZKI() 1( P)(P)

That this is independent of R follows from:

Proposition 1.1 Let ® be a maximal order in a finite dimensional simple
Q-algebra A. Let K C A be the center, and let R C K be the ring of
integers. Let
nr: K (R) — R and (nr) : K (i ) — (ﬁ )*
B p- 1Yp P
denote the reduced norm maps. Then (nr)p is onto, Ker((nr)p) = SKl(ﬂp) is

finite of order prime to p, and

10



