Lecture Notes In

Computer Science

Edited by G. Goos and J. Hartmanis

s

Wolfgang Polak

,Compller Specuﬂcatlon
. and Venflcatlon |

@ﬂ

| prmger-VerIag
Berlin Heldelberg NewYork

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

124

Wolfgang Polak

Compiler Specification
and Verification

Springer-Verlag
Berlin Heidelberg New York 1981

Editorial Board
W. Brauer P.Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Author

Wolfgang Polak
Computer Systems Laboratory, Stanford University
Stanford, CA 94305, USA

AMS Subiject Classifications (1979): 68B10
CR Subject Classifications (1981): 4.12, 5.24

ISBN 3-540-10886-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10886-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All nghts are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “*Verwertungsgesellschaft Wort”, Munich.

© by Springer-Verlag Berlin Heidelberg 1981

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

'

Lecture Notes in Computer Science

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: Gl-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: L.F.L.P. TC7 Optimization
Conferences.) Edited by G. I. Marchuk. VIll, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A. Blikle. VIl, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel-
VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XIl, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Be¢var. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-283, 1975. Edited by H. Brakhage on behalf of Gl. VI,
292 Seiten. 1975.

Vol. 34: Gl - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Miihibacher. X, 755 Seiten.
1975.

Vol. 36: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIII, 184 pages. 1975.

Vol. 36: S. A. Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bshm, i-Calculus and Computer Science Theory. Pro-
ceedings 1975 XIl, 370 pages. 1975

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M. Vanbegin. An Optimized Translation Process and Its Application
to ALGOL 68. IX, 334 pages. 1976.

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIll,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VII, 172 pages. 1976.

Vol. 43: E. Specker und V. Strassen, Komplexitit von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VlIl, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. Xl, 601 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIIl, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of Gl. VIIl, 418 pages. 1977.

Vol. 49: Interactive Systems. Proceedings 1976. Edited by A. Blaser
and C. Hackl. VI, 380 pages. 1976.

Vol. 50: A. C. Hartmann, A Concurrent Pascal Compiler for Mini-
computers. VI, 119 pages. 1977.

Vol. 61: B. S. Garbow, Matrix Eigensystem Routines - Eispack
Guide Extension. VIIl, 343 pages. 1977.

Vol.52: Automata, Languages and Programming. Fourth Colloquium,
University of Turku, July 1977. Edited by A. Salomaa and M. Steinby.
X, 5669 pages. 1977.

Vol. 53: Mathematical Foundations of Computer Science. Proceed-
ings 1977. Edited by J. Gruska. XII, 608 pages. 1977.

Vol. 54: Design and Implementation of Programming Languages.
Proceedings 1976. Edited by J. H. Williams and D. A. Fisher. X,
496 pages. 1977.

Vol. 55: A. Gerbier, Mes premiéres constructions de programmes.
XIl, 256 pages. 1977.

Vol. 56: Fundamentals of Computation Theory. Proceedings 1977.
Edited by M. Karpinski. XIl, 542 pages. 1977.

Vol. 57: Portability of Numerical Software. Proceedings 1976. Edited
by W. Cowell. VIIl, 539 pages. 1977.

Vol. 58: M. J. O'Donnell, Computing in Systems Described by Equa-
tions. XIV, 111 pages. 1977.

Vol. 59: E. Hill, Jr., A Comparative Study of Very Large Data Bases.
X, 140 pages. 1978.

Vol. 60: Operating Systems, An Advanced Course. Edited by R. Bayer,
R. M. Graham, and G. Seegmiiller. X, 593 pages. 1978.

Vol. 61: The Vienna Development Method: The Meta-Language.
Edited by D. Bjerner and C. B. Jones. XVIIl, 382 pages. 1978.

Vol. 62: Automata, Languages and Programming. Proceedings 1978.
Edited by G. Ausiello and C. Bshm. VI, 508 pages. 1978.

Vol. 83: Natural Language Communication with Computers. Edited
by Leonard Bolc. VI, 292 pages. 1978.

Vol. 64: Mathematical Foundations of Computer Science. Proceed-
ings 1978. Edited by J. Winkowski. X, 551 pages. 1978.

Vol. 65: Information Systems Methodology, Proceedings, 1978.
Edited by G. Bracchi and P. C. Lockemann. XIl, 696 pages. 1978.

Vol. 66: N. D. Jones and S. S. Muchnick, TEMPO: A Unified Treat-
ment of Binding Time and Parameter Passing Concepts in Pro-
gramming Languages. IX, 118 pages. 1978.

Vol. 67: Theoretical Computer Science, 4th Gl Conference, Aachen,
March 1979. Edited by K. Weihrauch. VI, 324 pages. 1979.

Vol. 68: D. Harel, First-Order Dynamic Logic. X, 133 pages. 1979.

Vol. 69: Program Construction. International Summer School. Edited
by F. L. Bauer and M. Broy. VIl, 651 pages. 1979.

Vol. 70: Semantics of Concurrent Computation. Proceedings 1979.
Edited by G. Kahn. VI, 368 pages. 1979.

Vol. 71: Automata, Languages and Programming. Proceedings 1979.
Edited by H. A. Maurer. IX, 684 pages. 1979.

Vol. 72: Symbolic and Algebraic Computation. Proceedings 1979.
Edited by E. W. Ng. XV, 657 pages. 1979.

Vol. 73: Graph-Grammars and Their Application to Computer
Science and Biology. Proceedings 1978. Edited by V. Claus, H. Ehrig
and G. Rozenberg. VIl, 477 pages. 1979.

Vol. 74: Mathematical Foundations of Computer Science. Proceed-
ings 1979. Edited by J. Be¢vat. IX, 580 pages. 1979.

Vol. 75: Mathematical Studies of Information Processing. Pro-
ceedings 1978. Edited by E. K. Blum, M. Paul and S. Takasu. VIIl,
629 pages. 1979.

Vol. 76: Codes for Boundary-Value Problems in Ordinary Differential
Equations. Proceedings 1978. Edited by B. Childs et al. VIIl, 388
pages. 1979.

Preface

About four years ago David Luckham hinted to me the possibility of verifying
a “real” compiler. At that time the idea seemed unrealistic, even absurd. After
looking closer at the problem and getting more familiar with the possibilities of
the Stanford verifier a verified compiler appeared not so impossible after all. In
fact, I was fascinated by the prospect of creating a large, correct piece of software;
so this subject became my thesis topic. I am very grateful to David Luckham for
suggesting this topic and for his continued advice.

The research has drastically changed my view of verification and programming
in general. Analysis and design of programs (even large ones) can be subject to
rigorous mathematical treatment — the art of programming may become a science
after all. Naturally, the reader will be skeptical, still, I hope to be able to convey
some of my fascination.

This text is a revised version of my Ph.D. thesis. The research was done at
Stanford University and was supported by the Advanced Research Projects Agency
of the Department of Defense, by the National Science Foundation, and by the
Studienstiftung des deutschen Volkes.

This work would have been impossible without the use of the Stanford verifier.
I have to thank all members of the Stanford verification group for providing this
excellent tool. Don Knuth’s text processing system TEX was a most valuable asset
for typesetting a manuscript that must be any typist’s nightmare.

I would like to thank my thesis committee David Luckham, Zohar Manna, and
Susan Owicki for their valuable time, for their careful reading, and for their helpful
advice. Friedrich von Henke contributed through numerous discussions and careful
perusal of initial drafts of my writing. Bob Boyer, J Moore, Bob Tennent, and Brian
Wichman provided valuable comments on the original thesis which have improved
the present text. Last but not least I thank my wife Gudrun for her patience and
support.

Table of Contents
Chapter 1. Introduction

1. Overview .

2. Program verification

2.1. Writing correct programs
2.1.1. Program design
2.1.2. An example
2.1.3. A word of warning

2.2. Logics of programming
2.2.1. Logic of computable functions (LCF)
2.2.2. First order logic
2.2.3. Hoare’s logic

2.3. The Stanford verifier
2.3.1. Assertion language
2.3.2. Theorem Prover

3. Formal definition of programming languages
3.1. Syntax
3.1.1. Micro syntax
3.1.2. Phrase structure
3.1.3. Tree Transformations.
3.2. Semantics
3.2.1. Operational semantics
3.2.2. Denotational semantics
3.2.3. Floyd - Hoare logic
3.2.4. Algebraic semantics
3.2.5. Others
3.3. Machine languages
3.4. Summary

4. Developing a verified compiler .
4.1. What we prove
4.2. Representation
4.3. Scanner
4.4. Parser
4.5. Semantic analysis
4.6. Code generation
4.6.1. Necessary theory

o
i

W WO ~I OO Utw w e

e e el el el el e el el el
ST U W WwWNNDN=O OO

16
17
18
19
20
21
22
22

\

4.6.2. Implementation

5. Related work

5.1. Previous work on compiler verification
5.2. Relation to our work
5.3. Compiler generators

6. Organization of this thesis .

Chapter II. Theoretical framework

1. Basic concepts

1.1. Functions

1.2. First order logic
1.2.1. Syntax
1.2.2.. Semantics

2. Scott’s logic of computable functions

2.1. Basic definitions
2.2. Operations on domains
2.3. Notations
2.3.1. Conditionals
2.3.2. Lists
2.4. Fixed points
2.4.1. Fixed point induction
2.4.2. Reasoning about fixed points

. Denotational semantics
3.1. General concepts
3.2. Semantic concepts of Algol-like languages
3.3. Denotational definition of a machine language
3.4. Notational issues

. Verification techniques
4.1. Pointers
4.1.1. Reference classes
4.1.2. Reasoning about pointers
4.1.3. Reasoning about extensions

23

. 24

24
25
26

. 27

. 28

28
29
29
29

. 30

31
31
33
33
34
34
34
35

. 36

36
37
38
38

. 39

40
40
40
41

Vi

4.2. Quantification
4.3. Computable functions and first order logic
4.3.1. Representations
4.3.2. Standard interpretations
4.3.3. Higher order functions
4.3.4. Least fixed points
4.3.5. Operationalization of fixed points

Chapter III. Source and target languages

1. The source language
1.1. Data structures
1.2. Program structures
1.3. Structure of the formal definition

2. Micro syntax :
2.1. Definitional forrnahsm
2.2. Micro syntax of LS

3. Syntax e e
3.1. Labeled context free gramimars
3.1.1. The accepted language
3.1.2. Parse trees
3.1.3. The function defined by a labeled grammar
3.2. Syntax of LS

4. Tree transformations .
4.1. Abstract syntax
4.1.1. A different notation
4.1.2. Syntactic domains of LS
4.2. Tree transformations for LS

5. Semantics of LS .
5.1. Semantic concepts
5.1.1. Semantic domains
5.1.2. Types and modes
5.1.3. Auxiliary functions, static semantics

42
44
44
46
46
47
48

51
51
53
54

55
55
57

57
57
58
58
58
59

59
59
60
60
62

62
63
63
67
67

5.2. Static semantics
5.2.1. Declarations
5.2.2. Types
5.2.3. Labels and identifiers
5.2.4. Expressions
5.2.5. Statements
5.2.6. Commands

5.3. Dynamic semantics
5.3.1. Auxiliary functions
5.3.2. Memory allocation
5.3.3. Declarations
5.3.4. Expressions
5.3.5. Statements

. The target language LT .

6.1. A hypothetical machine
6.1.1. Design decisions
6.1.2. Architecture
6.1.3. Instructions

6.2. Formal definition of LT
6.2.1. Abstract syntax
6.2.2. Semantic domains
6.2.3. Semantic equations

Chapter IV. The compiler proof

. Verifying a compiler
1.1. The compiler

1.1.1. Correctness statement
1.1.2. Structure of the compiler

1.2. The individual proofs

. A scanner for LS . .
2.1. Underlying theory
2.1.1. A suitable definition

2.1.2. Axiomatization of concepts

2.2. Basic algorithm

69
69
70
70
70
71
71
71
72
73
73
74
75

. 76

7
7
7
79
80
80
80
81

. 82

82
82
82
84

. 85

85
85
86
87

2.3. Implementation details

3. Aparserfor LS
3.1. LR theory
3.1.1. LR—parsing tables
3.1.2. The LR-parsing algorithm
3.1.3. Axiomatization
3.2. Tree transformations
3.2.1. Building abstract syntax trees
3.3. Refinement
3.3.1. Development cycle
3.3.2. Representation
3.3.3. Reference classes and pointer operations

4. Static semantics . . .

4.1. Recursive declaratlons
4.1.1. Operationalization
4.1.2. Revised definition of ¢ and dt
4.1.3. Representation of U, — U,
4.1.4. Resolving undefined references

4.2. Development of the program
4.2.1. Computing recursive functions
4.2.2. Refinement
4.2.3. Representation
4.2.4. Auxilliary functions
4.2.5. The complete program

5. Code generation . . .
5.1. Principle of code generatlon
5.2. Modified semantics definitions
5.2.1. A structured target language
5.2.2. A modified definition of LS
5.3. Relation between LS and LT
5.3.1. Compile time environments
5.3.2. Storage allocation
5.3.3. Storage maps
5.3.4. Relations between domains
5.3.5. Existence of recursive predicates
5.4. Implementation of the code generation
5.4.1. Specifying code generating procedures

89

90
90
91
92
93
95
95
96
96
97
98

99

99
100
101
103
104
105
105
109
109
112
113

. 113

114
116
116
118
120
121
121
122
123
126
127
127

5.4.2. Treatment of labels
5.4.3. Declarations

5.4.4. Procedures and functions
5.4.5. Blocks

5.4.6. Refinement

Chapter V. Conclusions

1. Summary

2. Extensions . .
2.1. Optimization
2.2. Register machines
2.3. New language features
2.4. A stronger correctness statement

3. Future research
3.1. Structuring a compiler
3.2. Improvements of verification systems
3.3. Better verification techniques
3.4. Program development systems

References

Appendix 1. Formal definition of LS

1. Micro Syntax of LS .
1.1. Domains
1.2. Languages L;
1.3. Auxiliary definitions
1.4. Semantic Functions

131
134
135
137
137

138

139
139
140
140
141

142
142
143
144
145

146

156
156
156
157
158

[\

. Syntax of LS

. Abstract syntax

3.1. Syntactic Domains
3.2. Constructor functions

. Tree transformations . .

4.1. Programs
4.2. Declarations
4.3. Expressions
4.4. Statements

. Semantics of LS .
5.1. Semantic Domains
5.2. Types and Modes

. Static Semantics of LS P
6.1. Auxilliary functions, static Semantics

6.2. Declarations
6.3. Expressions
6.4. Statements

. Dynamic Semantics of

LS .

7.1. Auxiliary functions

7.2. Declarations
7.3. Expressions
7.4. Statements

Appendix 2. Formal definition of LT

. Abstract syntax
. Semantic Domains .
. Auxiliary Functions

. Semantic Equations

.....

Xl

. 160

. 162

162
163

. 164

164
165
166
167

. 167

167
168

. 169

169
174
176
177

. 179

179
185
187
189

. 191

. 191

. 192

. 192

w N

|—‘

[V]

[\V]

Xl

Appendix 3. The Scanner

. Logical basis . . .
1.1. Definition of the micro synta.x
1.2. Representation functions

1.3. Sequences

. The program .

. Typical verification'conditions

Appendix 4. The Parsex

. Logical basis . ..
1.1. Representation functlons
1.2. LR theory

1.3. Tree transformations
1.4. Extension operations

. The program .

Appendix 5. Static semantics

. Logical basis .

1.1. Rules for e

1.2. Recursive types
1.2.1. Types
1.2.2. Fixed points

. The program .

2.1. Declarations
2.1.1. Types
2.1.2. Abstract syntax
2.1.3. Auxiliary functions

195
195
197
198

199
207

211
211
211
212
213

214

225
225
227
227
229

230
230
230
231
234

2.2.
2.3.

Xiil

Expressions
Types

Appendix 6. Code generation

. Logical basis

. The program

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

Declarations

Virtual procedures

Auxiliary functions

Abstract syntax, types and modes
Code generating functions
Expressions

Commands

Statements

237
240

. 245
. 250

250
250
252
263
255
261
265
267

Chapter I. Introduction

“The ultimate goals [somewhqt utoptan) include error-free
compalers, ... ”.

S. Greibach

1. Overview

In this thesis we describe the design, implementation, and verification of a
compiler for a Pascal-like language. While previous work on compiler verification
has focused largely on proofs of abstract “code generating algorithms” we are
interested in a “real” compiler translating a string of characters into machine code
efficiently. We consider all components of such a compiler including scanning,
parsing, type checking and code generation.

Our interest is twofold. First, we are concerned with the formal mathematical
treatment of programming languages and compilers and the development of formal
definitions suitable as input for automated program verification systems. Second,
we are interested in the more general problem of verifying large software systems.

There are several reasons for verifying a compiler. Compilers are among the
most frequently used programs. Consequently, if we invest in program proofs it is
reasonable to do this in an area where we may expect the highest payoff. Verification
techniques are in general applied to programs written in high level languages. If
we ever want to use verified programs we have to be able to correctly translate
them into executable machine languages; another reason why correct compilers are
a necessity.

The implemented language, LS, contains all features of Pascal [JW76] that are
of interest to compiler constructors. The language contains most control structures
of Pascal, recursive procedures and functions, and jumps. It provides user defined
data types including arrays, records, and pointers. A simple facility for input —
output is included; each program operates with one input and one output file.

The target language, LT, assumes a stack machine including a display mecha-
nism [RR64, Or73] to handle procedure and function calls. This language simplifies
our task somewhat as it avoids the issue of register allocation and similar irrelevant

2 I. Introduction

details. But at the same time the target language is realistic in that similar machine
architectures exist, notably the B6700.

The compiler itself is written in Pascal Plus, a dialect of Pascal accepted by the
Stanford verifier.! The Stanford verifier [SV79:| is used to give a complete formal
machine checked verification of the compiler.

We review existing methods for the formal definition of programming lan-
guages. We use the most appropriate definitional methods to formally define source
and target language.

We further investigate how the correctness of a compiler can be specified in
a form suitable for mechanical verification. Here, we have to deal with several
technical issues such as fixed points and reasoning about pointers.

We show that an efficient program can be developed systematically from such
specifications.

During this research verification has proven to be a most useful tool to support
program development; verification should be an integral part of the development
process and plays a role comparable to that of type ckecking in strongly typed
languages. This methodology of verification supported programming is not limited
to compilers, rather it is applicable to arbitrary problem domains.

The results of this thesis are encouraging and let us hope that verification will
soon become a widely accepted software engineering tool. But also this work reveals
many of the trouble spots still existing in today’s verification technology. We point
to several promising research areas that will make verification more accessible. The
need for better human engineering and integrated software development systems is
particularly urgent.

2. Program verification

Verification has provoked several controversial statements by opponents and
proponents recently I:DL79]. Therefore it is appropriate at this point to clarify
what verification is, what it can do, and, most importantly, what it cannot do.

To verify a program means to prove that the program is consistent with its
specifications. Subsequently, the term “verification” is used as a technical term
referring to the process of proving consistency with specifications. A program is
“verified” if a consistency proof has been established.

Formal specifications for a program can express different requirements. For
example, a specification can be “the program terminates for each set of input data”.

1.) Notable difference to standard Pascal is that formal documentation is an integral part of the

language, for more details see 2.3.

Program verification 3

Or, even more trivially, one can specify that “the program satisfies all type and
declaration constraints”; every compiler verifies this property. But of course, we
consider more interesting properties of our compiler. What exactly its specifications
are is discussed in the following sections and in more detail in chapter IV.

Since specifications can be weak and need not (and generally do not) express
all requirements for a program verification should not be confused with correctness
in the intuitive sense (i.e. the program does what one expects it to do). Verification
is not a substitute for other software engineering techniques such as systematic
program development, testing, walk-through and so on; rather verification augments
these techniques. It gives us an additional level of confidence that our program has
the property expressed in its specifications.

Depending on the application of a program certain errors may be mere an-
noyances while other may have disasterous effects. We can classify errors as “cheap”
and “expensive”. For example, in terms of our compiler cheap properties are the
reliablility of error recovery and termination. An expensive error would be if the
compiler would translate an input program without reporting an error but would
generate wrong code.

As long as verification is expensive we can concentrate our efforts on the most
costly requirements of a program. These requirements can be formalized and taken
as specifications for the program. Verification can be used to guarantee these
expensive requirements. Other cheaper propertics can be validated by conventional
testing methods. Redundant code can easily be added to a verified program to
increase its reliability or establish additional properties without effecting verified
parts of the program. For example, in our compiler a sophisticated error recovery
could be added without invalidating program proofs.

2.1. Writing correct programs

The non-technical use of the expression “to verify a program” suggests that
there is an existing program which we subject to a verification. This is possible in
principle but most certainly not practical for large software systems; it will only
work for “toy” programs.

Instead, verification should be an integral part of program deveclopment: a
program and its proof should be developed simultaneously from their specifications.

2.1.1. Program design

The process of designing a verified program can be visualized by figure 1.
The starting point for the program design is a formal specification of the problem.
In general, this specification alone is insufficient to prove the correctness of an

