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Preface

About four years ago David Luckham hinted to me the possibility of verifying
a “real” compiler. At that time the idea seemed unrealistic, even absurd. After
looking closer at the problem and getting more familiar with the possibilities of
the Stanford verifier a verified compiler appeared not so impossible after all. In
fact, I was fascinated by the prospect of creating a large, correct piece of software;
so this subject became my thesis topic. I am very grateful to David Luckham for
suggesting this topic and for his continued advice.

The research has drastically changed my view of verification and programming
in general. Analysis and design of programs (even large ones) can be subject to
rigorous mathematical treatment — the art of programming may become a science
after all. Naturally, the reader will be skeptical, still, I hope to be able to convey
some of my fascination.

This text is a revised version of my Ph.D. thesis. The research was done at
Stanford University and was supported by the Advanced Research Projects Agency
of the Department of Defense, by the National Science Foundation, and by the
Studienstiftung des deutschen Volkes.

This work would have been impossible without the use of the Stanford verifier.
I have to thank all members of the Stanford verification group for providing this
excellent tool. Don Knuth’s text processing system TEX was a most valuable asset
for typesetting a manuscript that must be any typist’s nightmare.

I would like to thank my thesis committee David Luckham, Zohar Manna, and
Susan Owicki for their valuable time, for their careful reading, and for their helpful
advice. Friedrich von Henke contributed through numerous discussions and careful
perusal of initial drafts of my writing. Bob Boyer, J Moore, Bob Tennent, and Brian
Wichman provided valuable comments on the original thesis which have improved
the present text. Last but not least I thank my wife Gudrun for her patience and
support.
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Chapter I. Introduction

“The ultimate goals [somewhqt utoptan) include error-free
compalers, ... ”.

S. Greibach

1. Overview

In this thesis we describe the design, implementation, and verification of a
compiler for a Pascal-like language. While previous work on compiler verification
has focused largely on proofs of abstract “code generating algorithms” we are
interested in a “real” compiler translating a string of characters into machine code
efficiently. We consider all components of such a compiler including scanning,
parsing, type checking and code generation.

Our interest is twofold. First, we are concerned with the formal mathematical
treatment of programming languages and compilers and the development of formal
definitions suitable as input for automated program verification systems. Second,
we are interested in the more general problem of verifying large software systems.

There are several reasons for verifying a compiler. Compilers are among the
most frequently used programs. Consequently, if we invest in program proofs it is
reasonable to do this in an area where we may expect the highest payoff. Verification
techniques are in general applied to programs written in high level languages. If
we ever want to use verified programs we have to be able to correctly translate
them into executable machine languages; another reason why correct compilers are
a necessity.

The implemented language, LS, contains all features of Pascal [JW76] that are
of interest to compiler constructors. The language contains most control structures
of Pascal, recursive procedures and functions, and jumps. It provides user defined
data types including arrays, records, and pointers. A simple facility for input —
output is included; each program operates with one input and one output file.

The target language, LT, assumes a stack machine including a display mecha-
nism [RR64, Or73] to handle procedure and function calls. This language simplifies
our task somewhat as it avoids the issue of register allocation and similar irrelevant



2 I. Introduction

details. But at the same time the target language is realistic in that similar machine
architectures exist, notably the B6700.

The compiler itself is written in Pascal Plus, a dialect of Pascal accepted by the
Stanford verifier.! The Stanford verifier [SV79:| is used to give a complete formal
machine checked verification of the compiler.

We review existing methods for the formal definition of programming lan-
guages. We use the most appropriate definitional methods to formally define source
and target language.

We further investigate how the correctness of a compiler can be specified in
a form suitable for mechanical verification. Here, we have to deal with several
technical issues such as fixed points and reasoning about pointers.

We show that an efficient program can be developed systematically from such
specifications.

During this research verification has proven to be a most useful tool to support
program development; verification should be an integral part of the development
process and plays a role comparable to that of type ckecking in strongly typed
languages. This methodology of verification supported programming is not limited
to compilers, rather it is applicable to arbitrary problem domains.

The results of this thesis are encouraging and let us hope that verification will
soon become a widely accepted software engineering tool. But also this work reveals
many of the trouble spots still existing in today’s verification technology. We point
to several promising research areas that will make verification more accessible. The
need for better human engineering and integrated software development systems is
particularly urgent.

2. Program verification

Verification has provoked several controversial statements by opponents and
proponents recently I:DL79]. Therefore it is appropriate at this point to clarify
what verification is, what it can do, and, most importantly, what it cannot do.

To verify a program means to prove that the program is consistent with its
specifications. Subsequently, the term “verification” is used as a technical term
referring to the process of proving consistency with specifications. A program is
“verified” if a consistency proof has been established.

Formal specifications for a program can express different requirements. For
example, a specification can be “the program terminates for each set of input data”.

1.) Notable difference to standard Pascal is that formal documentation is an integral part of the

language, for more details see 2.3.



Program verification 3

Or, even more trivially, one can specify that “the program satisfies all type and
declaration constraints”; every compiler verifies this property. But of course, we
consider more interesting properties of our compiler. What exactly its specifications
are is discussed in the following sections and in more detail in chapter IV.

Since specifications can be weak and need not (and generally do not) express
all requirements for a program verification should not be confused with correctness
in the intuitive sense (i.e. the program does what one expects it to do). Verification
is not a substitute for other software engineering techniques such as systematic
program development, testing, walk-through and so on; rather verification augments
these techniques. It gives us an additional level of confidence that our program has
the property expressed in its specifications.

Depending on the application of a program certain errors may be mere an-
noyances while other may have disasterous effects. We can classify errors as “cheap”
and “expensive”. For example, in terms of our compiler cheap properties are the
reliablility of error recovery and termination. An expensive error would be if the
compiler would translate an input program without reporting an error but would
generate wrong code.

As long as verification is expensive we can concentrate our efforts on the most
costly requirements of a program. These requirements can be formalized and taken
as specifications for the program. Verification can be used to guarantee these
expensive requirements. Other cheaper propertics can be validated by conventional
testing methods. Redundant code can easily be added to a verified program to
increase its reliability or establish additional properties without effecting verified
parts of the program. For example, in our compiler a sophisticated error recovery
could be added without invalidating program proofs.

2.1. Writing correct programs

The non-technical use of the expression “to verify a program” suggests that
there is an existing program which we subject to a verification. This is possible in
principle but most certainly not practical for large software systems; it will only
work for “toy” programs.

Instead, verification should be an integral part of program deveclopment: a
program and its proof should be developed simultaneously from their specifications.

2.1.1. Program design

The process of designing a verified program can be visualized by figure 1.
The starting point for the program design is a formal specification of the problem.
In general, this specification alone is insufficient to prove the correctness of an



