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Preface

Mathematical methods has been a dominant research path in computational
vision leading to a number of areas like filtering, segmentation, motion analysis
and stereo reconstruction. Within such a branch visual perception tasks can
either be addressed through the introduction of application-driven geometric
flows or through the minimization of problem-driven cost functions where their
lowest potential corresponds to image understanding.

The 3rd IEEE Workshop on Variational, Geometric and Level Set Methods
focused on these novel mathematical techniques and their applications to com-
puter vision problems. To this end, from a substantial number of submissions,
30 high-quality papers were selected after a fully blind review process covering
a large spectrum of computer-aided visual understanding of the environment.

The papers are organized into four thematic areas: (i) Image Filtering and
Reconstruction, (ii) Segmentation and Grouping, (iii) Registration and Motion
Analysis and (iiii) 3D and Reconstruction. In the first area solutions to image
enhancement, inpainting and compression are presented, while more advanced
applications like model-free and model-based segmentation are presented in the
segmentation area. Registration of curves and images as well as multi-frame
segmentation and tracking are part of the motion understanding track, while in-
troducing computational processes in manifolds, shape from shading, calibration
and stereo reconstruction are part of the 3D track.

We hope that the material presented in the proceedings exceeds your expec-
tations and will influence your research directions in the future. We would like
to acknowledge the support of the Imaging and Visualization Department of
Siemens Corporate Research for sponsoring the Best Student Paper Award.

Nikos Paragios
Olivier Faugeras
Tony Chan
Christoph Schnoerr
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A Study of Non-smooth Convex Flow
Decomposition

Jing Yuan, Christoph Schnérr, Gabriele Steidl, and Florian Becker

Department of Mathematics and Computer Science,
University of Mannheim, 68131 Mannheim, Germany
WWW.CcVgpr.uni-mannheim.de
kiwi.math.uni-mannheim.de

Abstract. We present a mathematical and computational feasibility
study of the variational convex decomposition of 2D vector fields into
coherent structures and additively superposed flow textures. Such de-
compositions are of interest for the analysis of image sequences in exper-
imental fluid dynamics and for highly non-rigid image flows in computer
vision.

Our work extends current research on image decomposition into struc-
tural and textural parts in a twofold way. Firstly, based on Gauss’ inte-
gral theorem, we decompose flows into three components related to the
flow’s divergence, curl, and the boundary flow. To this end, we use proper
operator discretizations that yield exact analogs of the basic continu-
ous relations of vector analysis. Secondly, we decompose simultaneously
both the divergence and the curl component into respective structural
and textural parts. We show that the variational problem to achieve this
decomposition together with necessary compatibility constraints can be
reliably solved using a single convex second-order conic program.

1 Introduction

The representation, estimation, and analysis of non-rigid motions is relevant
to many scenarios in computer vision, medical imaging, remote sensing, and
experimental fluid dynamics. In the latter case, for example, sophisticated mea-
surement techniques including pulsed laser light sheets, modern CCD cameras
and dedicated hardware, enable the recording of high-resolution image sequences
that reveal the evolution of spatial structures of unsteady flows [1].

In this context, two issues are particularly important. Firstly, the design
and investigation of variational approaches to motion estimation that are well-
posed through regularization but do not penalize relevant flow structures are
of interest. A corresponding line of research concerns the use of higher-order
regularizers as investigated, for example, in [2,3,4]. Secondly, representation of
motions by components that capture different physical aspects are important
for most areas of application mentioned above. Referring again to experimental
fluid dynamics, for example, the extraction of coherent flow structures which are
immersed into additional motion components at different spatial scales [5], poses
a challenge for image sequence analysis.

N. Paragios et al. (Eds.): VLSM 2005, LNCS 3752, pp. 1-12, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 J. Yuan et al.

The decomposition of images has become an interesting and active area of
research quite recently. Based on the seminal paper [6] introducing total varia-
tion based image denoising, and on the use of norms that are suited for repre-
senting oscillating patterns [7], a range of novel variational and computational
approaches have been suggested for decomposing images of general scenes into
basic components related to geometry, texture, and noise; e.g., [8,9,10,11].

In the present paper, we focus on function decomposition from the viewpoint
of non-rigid variational motion analysis, and based on our recent work [12].
Specifically, we consider Meyer’s [7] variational model

minTV(f*), st f'+f=7F, |fsc<é (1)

as a representative approach to the decomposition of a function f into its basic
structural and textural parts f°, f¢, and study the feasibility of an extension
to the decomposition of motion vector fields. Our objective is the simultaneous
decomposition of a vector field into physically relevant components related to
its divergence and curl, and the decomposition of these components into parts
with intrinsic variations at different scales.

In section 2, we introduce the discrete representation of vector fields by its
basic components related to divergence, curl, and boundary values. Based on
an accurate discretization employing various finite-dimensional spaces and cor-
responding operators, a variational model for the simultaneous decomposition
of these components is proposed in section 3. From the computational point of
view, we prefer to reformulate our variational problem as a convex conic program
in subsection 4 because all compatibility constraints defining our decomposition
can be included at once. While conic programming has found widespread ap-
plications in all branches of computational science, it has only recently been
suggested for the decomposition of scalar-valued image functions [13]. Numeri-
cal experiments demonstrate the feasibility of our approach in section 5.

2 Vector Field Representation

2.1 Flow Discretization

For discretizing the relevant differential operators we apply the mimetic finite
difference method introduced by Hyman and Shashkov in [14]. This method
preserves the integral identities satisfied by the continuous differential operators
by appropriately defining their discrete analogues simultaneously with respect
to two grids which we call primal and dual grid. Then we define

Hp: space of scalar fields on vertices,

Hy: space of scalar field on cells,

Hg: space of vector fields defined normal to sides,
Hpg: space of vector fields defined tangential to sides,

and Hp,HE, Hf as their restricted versions of inner scalar/vector fields, see
Fig. 1. Likewise, we consider the restriced spaces Hp, H, Hg also as naturally
embedded in Hp, Hg, Hg with zero boundaries. While Hp and Hy are equipped
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with the usual Euclidian norm, the norms on Hg and Hg include boundary
weights, see appendix. The discrete versions of the first order operators V, div
and curl with respect to the primal and dual grid are given by

G:Hp — Hg, Div : Hs — Hy, Curl : Hg — Hy,
G : Hy — Hg, Div :Hg — Hp, Curl : HG — Hp.

Reshaping the scalar/vector fields columnwise into vectors of appropriate lengths,
our first-order operators act on the corresponding vector spaces as the matrices
specified in the appendix.

Finally, for discretizing n - u|sg, we introduce the boundary operator B, :
Hs — O0Hs := Hg\HZ, which restricts the vector field to the vectors at the
grid’s boundary multiplied by the outer normal vectors. For the matrix form of
the operator, we refer to the appendix.

(i-1J) { Hs
Pany Hf Pany .-Hf
AN AV g
Hs
(1,-1) (1Li) (1,j+1)
& (i+1/g§+l/2
Hg i Hg Hy
Hg T(i+1y) l(i-!—l,j+1)

Fig. 1. Spaces Hp, Hy, Hs and Hg

2.2 Flow Representation

For the flow vectors u € Hg, we see by definition of Div and B,, that
Limpr, Div u = 1,55 Bou, (2)

where 1, denotes the vector consisting of n ones. This is just the discrete version
of the Gaussian Integral Theorem [, divudz = [,,n-udl. Conversely, we say
that p € Hy and v € 0Hg fulfill the compatibility condition if

Yiimay, P = Liimors V (3)

Besides the flow representation u € Hg, we will apply a second flow represen-
tation. To this end, consider the operator A : Hg — Hy & Hp @ 0Hg given in
matrix form by
Div
A e m = RdimHs+1,dimHs
B,

) (4)
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where the Curl operator is naturally extended to the whole space Hs here. The
operator A has full rank dimHg. Moreover, we see by (2) that (p,w,v)7 is in the
image of A iff p and v fulfill the compatibility condition (3). In this case u can
be obtained from given (p,w,v)T by u = At(p,w,v)T, where Al = (ATA)"1AT
denotes the pseudoinverse of A.

Proposition 1. There exists a one-to—one correspondence between the spaces
Hg and
Vs :=={(p,w, )" : Limp, P = ldimons v}

where p = Div u, w = Curl u, v = Byu, and conversely u = At(p,w,v)7.

3 Variational Approaches

3.1 Flow Decomposition

In this section, we want to decompose flow vectors u € Hg, resp., (p,w, )T € Vg
in a meaningful way. To this end, let ¢, denote the mean of the divergence of u
and ¢, the mean of the curl of u, i.e.,

Cp i= lgmeV P / dim HV = lgimHV Div u / dim HV 5 (5)
Cw 1= Limpg w / dim Hp = 1§50 Curl u / dim Hp . (6)

These are the discrete versions of |2|7! [, div(u)dz and [2|7! [, curl(u)dz.
Then we can decompose the flow (p,w,v)T € Vs as

(p,w,l/) = (C,,,Cw,ll) + (po’wa’o), (7)

where 13,00 = liimpewo = 0. Obviously, we have that (c,,cu,v)7,
(p°,w®,0)T € Vs again, so that u = u® + u° is the corresponding decomposi-
tion of u € Hg, where u¢ := Af(c,, ¢y, )™ and u® := Af(p°,w°, 0)7. The vector
u®, resp. (cp,Cu, V), represents the basic pattern of the non-rigid flow and its
boundary behaviour while u°, resp. (p°,w?,0), is related to the variant flow pat-
tern. Now we want to further decompose the intrinsic flow variation u° into a
structural part u® and a texture part u!, i.e., u° = u® + ul. By proposition 1,
this corresponds to the decomposition

(po’wo,o) = (pa,ws,o) + (pt’wt,o)_

In summary, our task consists in the decomposition of a given flow field
u € Hg as
u=u+u’ +ul (8)
We can apply A to u which provides us, by using in addition (5) and (6), with
(¢pscw, )™ and (p°,w?,0)T. Then, inspired by Meyer’s approach (1), we may
compute (p*,w*,0) and (p*,w?, 0) as solutions of the minimization problem

J(p*,w*, p'yw') = MTV(p°) + A TV(w°), 9)
st. p+pt=p% W =0 |pfg <, |l <6
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where the discrete TV functionals and the discrete versions of the G norm
are defined in the appendix. This variational approach extends Meyer’s model
for the decomposition of scalar-valued functions to the simultaneous decom-
position of vector fields into basic flow patterns. Finally, we may formally ob-
tain u® and u® by solving the linear systems (ATA)u® = AT(p®,w*,0)T and
(ATA)ut = AT(p*,w’,0)T. However, these systems are very ill-conditioned so
that we prefer to compute the components of u directly by minimizing the cor-
responding functional

J(u€,u®, ut) = \gTV(Div u®) + A TV(Curl u®) (10)
s.t. uC + u® + ’U,t =u,
GDiv u® =0, GCurlu® =0, 1<11‘imHg,m'LL8 =0,

Div u* = p*, Curl u* = W', ||p'||G <bq4, ”wt”G < ée.

This approach also fits into our flow estimation model in the next section.
We note that the third constraint is related to the decomposition (7). While
13%imp, Div u® = 0 is automatically fulfilled by the compatibility condition, we
have to take care about 13;,, me Curl u® = 0. However, by the G norm constraint
we have Curl u* = Div p for some p which again, by the compatibility condition,
and since Curl maps to Hp, implies that 13, e Curl u’ = 0. As a result, we
have only to take u® into account.

Finally, we point out that as in the scalar-valued case, some variations of
the approach (10) are easily conceivable. Referring to [8,10], for instance, the
constraint u®+u® +u® = u in (10) could be replaced by a L? penalty term. This
would imply L? penalty terms for each component in the decomposition.

3.2 Optical Flow Estimation Through Flow Decomposition

In this section, we combine the usual optical flow estimation method with the
structure-texture flow decomposition (8). For a given image sequence {g} € Hy,
we want to compute the components u¢ with constant divergence and curl, the
large-scale patterns u® of divergence and curl with bounded BV-norms, and the
small-scale patterns u’ of divergence and curl with bounded G-norms, by solving

J(ue*t) = |Gy - (u€ +u® +u?) + gs|; + ATV(Div u) + ATV (Turl v®) (11)
st. GDivu®=0, GCurlu®=0, Limag, Curl u® = 0,

Div u! = p*, Curl u* = uwt, “pt”G < b4, ||wt||G < ée.

Here g; denotes the discretization of the time derivative by a forward difference
and the inner product is taken with respect to Hg. We refer to (11) as TV-G
model. However, for the image areas where Vg = 0, the data term disappears
such that the local constraints through the two G-norm terms lead to unbounded
solutions. Hence, the flow estimation by solving problem (11) is not well-posed.
Therefore, we propose to replace the TV-G model by a TV-L, model where the
texture flow patterns u! have divergence and curl with bounded Lj-norms:



