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Introduction

These notes were the basis of a series of ten CBMS lectures at the Univer-
sity of Washington, Seattle, in July 1989, whose theme was the influence of
algebraic ideas on the development of ergodic theory. However, as anybody
familiar with the subject will realize, any comprehensive exploration of this
theme would fill a substantial book and several lecture courses, even if no
proofs are included. In view of this I had to restrict myself to two specific
topics, and even within these topics the shortage of space and time imposed
severe restrictions on the material I could hope to cover.

The first of these topics is the influence of operator algebras on dynamics.
The construction of factors from group actions on measure spaces introduced
by F. J. Murray and J. von Neumann in the 1930s has, in turn, influenced
ergodic theory by leading to H. A. Dye’s notion of orbit equivalence, G. W.
Mackey’s study of virtual groups, and the investigation of ergodic and topo-
logical equivalence relations by W. Krieger, J. Feldman and C. C, Moore,
A. Connes, and many others. The theory of operator algebras not only mo-
tivated the study of equivalence relations (or orbit structures), but it also
provided some of the key ideas for the development of this particular branch
of ergodic theory. The first four sections of these notes are devoted to ergodic
equivalence relations, their properties, and their classification, and present oc-
casional glimpses of the operator-algebraic context from which mapy of the
ideas and techniques arose. Ergodic theorists tend to regard ergodic equiv-
alence relations as a subject set apart from the main body of their field; for
this reason I have included a large number of examples which (I hope) show
that equivalence relations provide a very natural setting for many classical
constructions and classification problems. Many of these examples are drawn
from the context of Markov shifts; this was partly motivated by the fact that
the CBMS meeting followed on from a workshop on dynamics with signifi-
cant emphasis on coding theory, and partly by the ease and naturalness with
which some of the most useful invariants in coding theory can bé derived
and interpreted from the point of view of equivalence relations.

The last three sections of these notes are dedicated to higher dimensional



INTRODUCTION

isfactpty general theopy. This lack of progress is all the more remarkable
when compared with the richness of the iaeory in one dimension; it is due
to a variety of reasons, the ffnost famous of which is that any reasonably gen-
eral definition of higher dimensional Markov shifts immediately leads to the
problem that it may be undecidable whether the shift space is nonempty. A
second reason is that none of the techniques which have been so successful
for one dimensional Markov shifts, and some of which were described in
the preceding sections, appear to be applicable here. Section 5-is devoted to
elementary examples of such shifts and to the surprising difficulties these ex-
amples present. However, if one makes the (very restrictive) assumption that
the Mgrkév shift carries a group structure, then many of these difficulties can
be resolved, and one has the beginnings of a successful analysis which turns
out to encompass the-theory of expansive Z%-actions by automorphisms of
compact groups, and which exhibits an intriguing interplay between commu-
tative algebra and dynamics (Sections 6-7).

The attgntive reader will have noticed that there were ten lectures, but
that theré are only seven sections in these notes. Since seven and ten have no
common factor, I should explain how the lectures were organized: section one
was covered in iwo lectures, section two in three lectures, sections three, four,
and five in one lecture each, and the remaining two sections were covered in
two lectures after some of the material from section seven had already been
presented earlier by D. Lind in greater detail in a research seminar.

Copies of a preliminary version of these lecture notes had been distributed
to all members of the azlt{ience before the beginning of the lecture series, and
this enabled me to be-more selective in the material I presented in the talks
and to make occa;io/ial references to the notes for unexplained background
or further detajls.

These notés have benefitted from many conversations with experts both
before gnd during the conf ¢rence. Special thanks are due to W. Parry and C.
Suthetland for reading 'cr/' ically an earlier draft of these notes (to the latter
also for a number of disCussions on equivalence relations on odometers and
Markov shifts), to D,/Rudolph for explaining to me the tilings described in
Section §, to D./Befend for informing me about D. Masser’s result [Mas],
and to B. Kitcheéns for helping me to correct a mistake in Example 2.2(4),
and to him~and his frieri‘isl for feeding me seafood in order to build up-
my strength for the talks. However, my sincerest thanks go to D. Lind and
S. Tuncel, who organized both the workshop and the CBMS conference in
an exemplary manner, and whose warm hospitality made my stay in Seattle
greatly enjoyable.

’/ J ""' J . . . .
Markov shifts, a f‘;ﬁ;?d field of research with no indication yet of a sat-




1. Operator Algebras and Dynamical Systems

The connection between operator algebras dnd ergodic theory goes back
almost to the origins of the two subjects. In 1936, F. J. Murray and J. von
Neumann [MurN1] introduced the group measure space construction of von
Neumann algebras from group actions on measure spaces and showed that
these algebras are factors, i.e. have trivial centres, if and only if the group
actions are ergodic. This construction (with later refinements) remains one
of the most important sources of examples of operator algebras. A striking
early result in von Neumann algebras was the proof of the uniqueness of
the hyperfinite Il -factor in 1943 [MurN2], which implied in particular that
the factors constructed from any two measure-preserving, ergddic automor-
phisms on probability spaces' are isomorphic. Building on earlier work by
E. Hopf [Hop], H. A. Dye investigated the reason for the existence of such
an 1somorphism and found that the von Neumann algebra arising from the
group measure space construction only depends on the orblts of the group
(or the single transformation) acting on the measure space, and that any two
measure-preserving, ergodic automorphisms of probability spaces have iso-
morphic orbits [Dyel]. In [Dye2] he showed that every measure-preserving
action of a countable Abelian group (cf. [Abel]) on a probability space has
the same orbits as a suitably chosen single automorphism of the measure
space, thereby providing a proof for an announcement in [MurN2] that every
measure-preserving, ergodic action of an infinite Abelia~ group on a proba-
bility space again leads to the hyperfinite II,-factor. = .is emphasis on orbits
rather than group actions was brought to its logical conclusion in [FelM1] and
[FelM2], where the acting group is suppressed ccmpletely and the orbit space
is replaced by an equivalence relation.” Hand in hand with this development

'A measure space (X, ., u) is standard if (X ,.7) is a standard Borel space (1.e. Borel
isomorphic to a Borel subset of R with the induced Borel striscture) and y is a, g-finite measure
on .”* . The elements of % are the Borel sets. If there is no danger of confusion we sometimes
write (X, u) instead of (X,.”, u). All measure spaces are assumed to be standard. and all
measures g-finite.

IThe study of equivalence relations is a special case of G. W. Mackey’s investigation of virtual
groups [Macl], [Mac2], [Ram1). For a discussion of equivalence relations from a geometric point
of view we refer to [Con$], and topological equivalence relations are discussed in [Ren).

3



OPERATOR ALGEBRAS AND DYNAMICAL SYSTEMS

came the investigation of those properties of a nonsingular action g — T

of a countable’ group G on a measure space (X,.%, u) which are camed
by the orbit structure, independently of the way in which these orbits are
generated. °

The theory of operator algebras not only led to the study and partial classi-
fication of orbit spaces (or countable equivalence relations), but also provided
many of the ideas central to the investigation of the properties carried by the
orbit structure. These ideas have since been stripped of their origins and can
be discussed and used without any reference to (or knowledge of) operator
algebras, butI shall try to offer a glimpse of the context they originated from
in order to provide motivation, and to point the way to an area where there
are likely to be many more hidden treasures.

1.1. DeFiNITION [FelM1]. Let (X, %) be astandard Borel space. A Borel
set R C X x X is a {countable or discrete) Borel equivalence relation on X
if R is an equwalence relatlon and if, for every x € X, the equivalence
class R(x) = {x" € X:(x, x") € R} of x is countable. A Borel equivalence
relation R on X is finite if R(x) is finite forevery x € X. If S is a second
Borel equivalence relation on X then S is a subrelation of R if S(x) C R(x)
forevery xe X.

Let R be a Borel equivalence relation on X and let x4 be a measure
on .. Then R is (u-)nonsingular if u(R(A4)) = 0 for every 4 € &
with p(A4) = 0, where R(4) = |J,,R(x) denotes the saturation® of a set
A C X . A nonsingular equivalence relation R is transitive if u(X\R(x)) =0
for some x € X and intransitive otherwise. An intransitive equivalence
relation R 'is (properly) ergodic if u(R(A)°) = 0 whenever 4 € % and
u(A4) > 0. Two nonsingular equivalence relations R, S on (X,.%, u) are
equal (mod u) if there exists a u-null set N € .% such that R\(N x N) =
S\(N x N). Two nonsingular equivalence relations R and S on measure
spaces (X, . %, ¢} and (Y, 7, v) are isomorphic if there exists a measure
space isomorphism y:(X,. %, u) — (Y, ,v) such that (¢ x ¥)(R) =
S ( mod v), and the map y is an isomorphism5 of R and S.

1.2. ExampLEs. (1) Equivalence relations and group actions. Let T:g —
Tg be a nonsingular action® of a countable group G on (X,.%, u). Then

3The restriction to actions of countabie groups and to countable equivalence relations is
inessential, but has the advantage of technical simplicity. Ingredients for extending the theory
to actions of locally compact, second countable groups and the associated equivalence relations
can be found in {FelHM]} and [FelR).

Corollary 2 in [Kur, §39, VII] implies that R(4) € & for every A€.¥.

tf R=S then v is an automorphism of R, and y is an inner automorphism of R if
v € [R].

b1f (X,.%, u) is a measure space, a surjective Borel map V:X — X is a nonsingular
endomorphism of X if, for every B € 7, u(B) =0 if and only if u(V‘ B) =0 (in order for
uv- ! to be o-finite it may be necessary to replace u by an equivalent probability measure).
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RY = {(x, Tx):xe X, g€ G} is a nonsingular equivalence relation, and

R7 is transitive or ergodic if and only if T is transitive or ergodic. Every
nonsingular equivalence relation R on (X, .%, u) is of the form R = RY
for some nonsingular action T of a countable group on (X ,‘y , 1) [FelM1].
We define the full group [R] of R as the group of all nonsingular automor-
phisms V of (X, u) w1th (x,Vx) € R for p-ae. x € X. Then
there exists a Borel map (x, x') — pg X x Y= du(x)/du(x') from R 1o
R" such that, for every V € [R], (du/duV)(x) = Pr. (X, Vx) for u-ae.
x € X. The map pR is the Radon~Nikodym derivative of the equivalence
relation R. If PR, = l then R preserves p (or u is R-mvarlant) Consider

the o-finite measures y”‘) and ,u(R) on R defined by

(1.1) P (B) = /l{xe X:(x, x') € RN BY|du(x")
gnd
(1.2) u(B) = / {x € X:(x, x') € RN B}|du(x)

for every Borel set B C R, where |S| denotes the cardinality of a set S.
These measures are equivalent (i.e. have the same null sets), and

(1.3) | dy Jdpy’ = Py

If we are only interested in the measure class of ,ug“) we write up to denote
either /‘n ) or u&R) .

(2) Induced equivalence relations. Let R be a Borel equxvalence relation
on (X,%), Be.¥,andlet R, = RN (B x B) be the equivalence relation
induced by R on B. If u is a measure on X and u(B) > 0 then R, is

obviously a nonsingular equivalence relation on, (B, %5, 1), where 7 =

>

If V is invertible (up to a null set) then V is a nonsingular automorphism of (X. 7. u).
In both cases the measure p is said to be quasi-invarignt under V', andwp is invariant if
pV"' = it . A nonsingular action T of agroup G on (X, , u) isamap g — T, from ¢
into the group Aut{(X, &, u) of nonsingular automorphisms of (X, .5, u) suchthat T, T

T g Hae, forall g, ¢ € G. The actioh T is measure preserving if u is invariant under
every T ,g € G,and T is ergodic if every B € % with u(BAT B).=0 forall ge ¢
satisfies that either u(B) = 0 or u(X\B) = 0. A second nonsingularaction 7’ of G .on
a measure space (X', %, u') is conjugate to T if there exists a nonsingular isomorphism
vi X, %, - X, u') such that, for every g€ G, yT, = Ty u-ag.

If the group G is locally compact and second countable then every nonsingular action 7'
of G on (X S, 0 is conjugate to a nonsingular acuon T' of G ona measure space
(X', , u') with the property that the map (g, x) — T x from G x X' 10 X' is Borel.
and TA',T;: = T;g’ forall g, g € G (cf. [Var]). In this case the orbit Tox = {Tgx:g €GY} is
a Borel set for every x € X ,and T (as well as T) is called transitive if there exists a point
x €X' with g(X \TGX) 0. The actions T and T’ are properly ergodic if they are ergodic
and not transitive.
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{ANB:4 €%} and p, is the restriction of x4 to . If R is transitive or
ergodic, then the same is true for Ry

Let V be a nonsmgular automorphlsm of (X, 7, u), and let R" =
{{x, pk x):k eZ} be the equivalence relation induced by the Z-action n —
" on X .. The automorphism V is conservative if u(B) = 0 for every
B e & with w(BnN VkB) =0 forall 0#keZ. If V isconservative then
(R' )g =R Vs ( mod u) for every B € ¥ with u(B) > 0, where V is the
automomhlsm'induced by V on B:

jolf{k)or XEBY=Q

bgx = V™ x y-ae. with m(x
. l min{k > 0: T"x e B} otherwise

(3) Equivalence ré??ztions on Markov shifts. Let P = (P(i, j), 1 <1i,j<k)
be a nonnegati\{g/irreducible matrix’, and let Xp ={(x,)€e{l,..., k}Z:
P(x,, x j71)' >0 for all n € Z} be the Markov shift space (or simply
Marko,v shtft) defined’by P. Then X, is a closed, shift invariant subset of
{1‘/,/7 . k} , and we wnte o, for the restriction of the shift (Ux) =X,
on {1,. k) 1o X,/ We define a Borel equ1valence re]auon R” on X P
by setting (,x x') elfp if and only if there ex1st m,m ,n,n >0 with

7

(1.4) ”X~m—s =X o and Xnts = Xn'+4s
for every s > 0 ‘and denote by S* ¢ R” the subrelatlon con51st1ng of all pa -s
x/ € R s{lsfymg (1.4) with m = m’' and n = n'. The equivalence
felation ST was defined in [KriS], but was already 1mplicit in [Hed}, and R”
is taker from [Sch7]. All these equivalence relations are shift invariant.
he matrix P ¢ e converted into a stochastic’® matrix as follows:
et 4 be the un/iq/tf/mammal eigenvalue of P, and let v be a nonzero
right eigenvectorfor £ with eigenvalue A. Then the matrix P defined by
P, j)= i}'f*f/P(i, JY-wv(j)/u(i) for i, j=1,..., k, is stochastic, and we
define the"Markov measure:pu, on the Borel field & of X, by setting

(1.3) up(C) =plig)Pliy, i))---Pli,_y. 1)

for every cylinder set C = lgs---h i), = {x € Xpix,,, =1, for k =

> 'n

0....,n},where = (p(l), ..., p(k)) is the unique vector satisfying pP =
pand },_, ,pi)=1. Of particular interest is the measure of maximal

A k x k matrix P is nonnegative if all its entries are nonnegative, and a nonnegative
matrix P is irreducible if tl)ére exists, for every (i.j) with 1 €< i,j < k.an n > 1 with
P"(i, j) > 0, where P" is'the nth power of P under matrix multiplication. If there exists
an n > 1 with P"(i.j) > 0 forall 7, , then P is aperiodic. Although we shall always
assume apertadicity, this assumption is inessential and can be removed at the expense of a slight
lechmcal complication.

A nonnegative k x k matrix P is Stochastic if ns row sums are all equal to 1.
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entropy mp = {po , where P’ is the 0-1-matrix compatible’ with P [Parl].

The equivalence relation R” is nonsingular and ergodic with respect to u P
and

(1.6) pR,,‘W(x,x’)=( I1 P(x,.,xl“))/( I1 P(x,’,xj+,))

—m<i<n -m'<i<n’

whenever (x, x') € R” satisfies (1.4). Proposition 44 in [ParT]] implies
that u, is the measure of maximal entropy if and only if pgr , =1. We

always assume that the space X, and the equivalence relations R , S” are
furnished with the measure u p-

The equivalence relations R” and S are preserved under certain kinds
of isomorphism of the shift spaces. If P and Q are stochastic matrices, the
Markov shifts o, and g, are metrically conjugate if there exists a measure-
preserving isomorphism g: Xp — X such that ¢ -0, = 0 9 HUp-ae. The
isomorphism ¢ is finitary if there ex1st null sets N, C X, N C X , and
Borel maps a,,m, X, >N, a gt M=t X — N such that

(‘/’(x))o = (¢(y))o forall x, ye Xp\Np ,
/ with x, =y, for — m¢(x) Sn<a,lx)
and
(07 (X)) = (97" (1) forallx,ye X \N,
with x, =y, for —m _1(x)<n<a -i1(x).

A finitary isomorphism g: Xp— X has finite expected code lengths if the
functions a,,m,, -, m,: can all be chosen to be integrable.

Under our assumptions, op and g, are metrically conjugate if and only if
they have the same (metric) entropy hﬂp(GP) = —Zi’j'p‘(i)P(i, J) -
log(B(i)P(i, j))) =h uo(aQ) [FriO]. In [KeaS] M. Keane and M. Smbrodinsky
prove that, if o, and o, are metrically conjugate, then they are also fini-
tarily conjugate. However, W. Parry [Par6) and W. Krieger [KriS] found ob-
structions to the existence of isomorphisms with finite expected code lengths,
which turn out to be connected with the equivalence relations R® and S
defined above.

For every x € X, we denote by W’(x) = {y € Xp:x, = y; for all
sufficiently large n € N} and W*(x) = {y € Xp:x_, = y_, for all suffi-
ciently large n € N} the stable and unstable sets of x. A measure -preserving
isomorphism ¢: X, — X, is hyperbolic (more precisely: preserves the hyper-
bolic structure) if there exxst null sets N, ¢ X, and N - X such that

STwo nonnegative k xk matrices P, Q are compatibleif, forall 1 <i, j< k. P(i. / > (1

if and only if Q(i, j) > 0. Any two compatible matrices P, Q sansfy that X, =X,

R = RQ and S* = SQ but the measures up and Ug are in general (mutually) singular.
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(W (x)\N,) = X))\N and p(W’(x)\N, ) = W (p(x))\N, for ev-
ery x € X, . Since s’ (x) = W"(x)nW*(x) and R (x) = U, nez W"(0pmx)
N Ws(opnx) for every x € X,, every hyperbolic isomorphism ¢: X, — XQ
is an isothorphism of the equivalence relations s’ c R” and S9 c RY.

By [Kri5] every shift-commuting, finitary isomorphism ¢: X, — X o With
finite-expected code lengths is hyperbolic. If ¢ is finitary, but only the func-
tions m, and a, are integrable, then (¢ x tp)(RP ) c R? and (@ x (p)(SP) C
s@. According 1o [Sch8] a hyperbolic isomorphism ¢: X, — X 0 is finitary
if and only if there exist null sets N, C X, N, C X, , and Borel maps

a,,my:X,—N, a ., m:X,— N,such that |
(17) (p(x)), = ((o(x')),, for all n > 0 (n < 0) whenever x, x € Xp\N,
' and x,, = x, forall m > -m,(x) (m<a,(x)),

and
(1.8)
(9,-1(x)), = (9" ' (x')), forall n>0 (n<0)whenever x, x € X,\N,
and x,, = x, forall m > —m-i(x) (m < a,-i(x)).
(4) Equivalence relations on one-sided Markov shifts. In the notation of the
example'(3), let Y, = {x = (x,) € {1, ..., k}N:P(xn , X,,,) > 0 for every

n € N} be the one-sided Markov shift space (or Markov shift) defined by P,
and denote the shift on Y, again by g,. We set

P:{(x,x')eY,,xY ap(x)—ap(x) for some m, n > 0}

and

7 ={(x,x)e Y, x Y,05(x) = 0p(x') for some n > 0},
and we furnish Y,, R, and S'* with the probability measure Vp = fp -
n 1__, where 7z Xp — Y, is the projection obtained by forgetting negative
coordmates ® Then S'P C R'P the equivalence relations R? and S*

both nonsingular and ergodic with respect to v, , and
(1.9)

PP, (X x') ((XO) H P(x;, x;,}) )/( Bxg) H P(x; l+l)

0<i<n 0<i<n’

whenever op(x) = o, (x). Finally we note that z(R"(x)) = R”(n(x)) and
2(S”(x)) = 8" (n(x)) for every x € X, , and that R”” and S’ are invariant
under the shift o, .
i myp is the measure of maximal eniropy on X, then we denote the measure »1, - 2!
on Y, againby mp.
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(5) Equivalence relations of an endomorphism. Let (X, 5, u) be a mea-
sure space, and let V:X — X a nonsingular, surjective Borel map such that
'({x}) is countable for every x € X (i.e. V is a nonsingular, countable-
to-one endomorphism of (X, ., u)). We define Borel equivalence relations

R = {(x,x)eXxX:V"x=V"x" for some m, n > 0}

and

' ={(x,x)e X x X:¥"x =V"x" forsome m > 0}

and assume that the equivalence relations R” and S¥ are nonsingular with
respect to u (this is not automatic!). Example (4) corresponds to the special
case where X =Y, and V = o,. Another well-known example is obtained
by setting X = [0, 1]\Q with its usual Borel field ... The measure du(x) =
{1+ x)_ldx on % is invariant under the Borel endomorphism Vx =
! (mod 1) of X, and the equivalence relations R” and S are non-
singular and ergodic on (X, .%, u). The endomorphism V is called the
continued fraction transformation, since the continued fraction expansion

x=[a ,a,,..]=

of x € R,\Q isgivenby a, = (V" "'x)™' = ¥"x forevery n > 1. The map

p:x —y=(a,a,,...) from X to ¥ = NV is a Borel isomorphism,
and -V = 0 - ¢, where o denotes the shift (6y), =y, , on Y. Itis
well known (and not difficult to verify) that two poims x,x €X satisfy
that (x, x") € R” (or, equivalently, that (p(x), @(x )) € R%) if and only if
there exists 2 matrix (2%) € GL(2, Z) such that x’ = (ax + b)/(cx + d).
Although equivalence relations of endomorphisms are not usually associated
with group actions in any canonical way, this shows that R' = (RT) x » Where
T is the action of GL(2, Z) on R\Q defined by T x = (ax + b)/(cx + d)
for every x € R\Q and g = (95) € GL(2, Z) [HardW], [CorFS],

The continued fraction transformation just described is typical in the
sense that, if V' is an arbitrary, countable-to-one, measure—preservmg en-
domorphism of a probabxhty space (X,,u), and if RY and, s¥
u-nonsingular, then R” and S” can always be realized as in example (3)
as the equivalence relations on a one-sided shift space (possibly with infinite
alphabet). However, if V' is only assumed to be nonsingular, then R” and
s¥ may have some very unexpected properties. Here is an example where
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R” preserves u: take X = R_, u =Lebesgue measure on R, , and let
ViR, _'.R , be defined by setting ,
0=0, and Vx= 3 a.(x)- 107"
¢ k>ky(x)
for every
X = a,(x) - 107*eRr
k> ky(x)

+ ki

where ako(x)(x) >0 and 0< g (x) <9 forevery k € Z. In other words, V
replaces the leading digit in the decimal expansion of a point x by 0. Then
V' is nonsingular and ergodic on (X, u), and R” preserves (.

This kind of pathological behaviour can obviously not occur if an endo-
morphism ¥ of (X,.%, u) can be extended'' to a nonsingular, (properly)
ergodic automorplism W of a measure space (Y, .7, v). There are many
unresolved problems and phenomena in this area, and we refer to [EigS] for
some recent results.

In order to describe how a nonsingular equivalence relation gives rise to
a von Neumann algebra we consider a complex Hilbert space H with inner
product (-, -) and denote by B(H) the algebra of all bounded linear opera-
tors A: { — H with norm [|-||. The adjoint A* of an operator 4 € B(H)
is defined by (Av, w) = (v, A"w), v,w € H. Aset & C B(H) is self
adjoint if A € &/ forevery A € &/ . A C -algebra is a norm closed, self
adjoint subalgebra of B(H) which contains the identity operator | on H.
A C"-algebra & C B(H) is a von Neumann algebra if o/ is closed in the
strong topology, i.e. in the smallest topology on B(H) in which all the maps
A — ||Av||, v € H, are continuous. If &/ C B(H) is a self-adjoint sub-
set then its commutant &' = {B € B(H): AB = BA for every A € &} is
a von Neumann algebra, and & is a von Néumann algebra if and only if
& =" = (") . Avon Neumann algebra & isa factorif ¥ N’ =C-1,
and & = B(H) if and only if &' =C 1.

The most simple-minded construction of a von Neumann alebra &% from
a nonsinghlpg equivalence relation R on a measure space (X, ¥, u) is ob-
tained by setting H = L*(X, 1) and & = {U,:V € RI}UL>(X, u))" C
B(H), where U, is the unitary operator'’ U, f = (duV;duw)"'* (- V),
fe€H,V e[R], and where every h € L_(X, u) is regarded as a muitipli-
cation operator in B(H). It is not difficult to verify that L*(X, u) c B(H)
is a maximal Abelian subalgebra"’, and that & N’ = {f € L®(X, u):

An automorphism W on (Y, , v) extends V if there exists 2 nonsingular, surjective
map y:Y — X suchthat w-W =V .y v-ae.

2 An operator U € B(H) is unitary if U* = U™" (or, equivalently, if UU* = U*U=1).

Bif o ¢ B(H) is a von Neumann algebra, a subalgebra % C & is maximal Abelian if
BNt =B .
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[V =f p-ae. forall V €[R]}. In particular, & is a factor if and only
if R is ergodic, and 7 = B(H) in this case.

In order to construct a more interesting von Neumann algebra from a non-
singular equivalence relation R on (X, .57, u) we follow [FelM1] (see also
[Ver1]) and set H = L*(R, u’) (cf. (1.1)). For every h € L™(X, u) we
obtain multiplication operators M, , M, € B(H) by setting (M, f)(x, x") =

x)f(x, x"), M'f ) x, x') = f(x xV(x"), f€ H, and we put #(R) =
{M heL®(X,u)} and #'(R) = {M,:he L™(X, p)}. For V &[R] (Ex-
ample 1.2(1)) we define unitary operators L, , L'V € B(H) by

(LyN)(x, x'y = fV~'x, x') and (L, N)(x,x") = f(x, V™ 'x)-pg ,(V7'X,

')l/2 f€H. Then V- L, and V — L are homomorphisms from [R]
into B(H), and L;' //{(R) L, = LV_ -/(R)~L'V = .#(R) for every
V € [R]. The algebra & (R) = (#(R)U{L,:V € [R]})" is called the von
Neumann algebra of the equivalence relation R . If R is ergodic, then &/ (R)
is a factor, .#(R) C & (R) is maximal Abelian, and % (R) = # (.#(R))",
where ./ (# (R)) is the normalizer of .#(R) e

Since the (isomorphism class'’ of the) von Neumann algebra & (R) is
unaffected if we ;eplace u by an equivalence measure v ~ u ‘we can assume
without loss in generality that u4(X) = 1. The unit vector w € H .given by
w(x, x') = O, » ' s cyclic under & (R) (i.e. &/ (R)w is densein H), and
we set, for every 4 € ¥/ (R),

(1.10) nu(A):(Aw,w).

Then 7,:% (R) — C is a (faithful) state, i.e. a bounded linear functional
such that 7,(1) = 1 and 7,(4"4) > 0 whenever 0 # 4 € & (R), and

M) = [hdyu forall h e L(X, g). If R preserves u, then n, is a
(normalized) trace on %7 (R), i.e. n,(AB) = n,(BA) for all 4, B € & (R).
If i is an infinite R-invariant measure on X we can formally define « and
n, as above, but w ¢ H, and n,(4) cannot be defined for all elements of
& (R). The domain D(n,) = {4 € &/ (R):n,(4"4) < o} of n, is a dense
subalgebra of & (R), 7 ”( B) =n,(BA) fo; all 4, Be D(n,), and n, is a
semifinite trace on < (R).

1.3. ExaMprLEs. (1) The von Neumann algebra of a free group action. Let

"“The normalizer of .#(R) is the set of all unitary operators U € & (R} with v - #(R)-
U = #(R). One checks easily that {M,, M,:h € L¥(X. )} = LR, pg), ¥ (R) =
(' RyU{L,:V € [R]})' ¢ «(R) and & (R) C.(& (R)) . From this it is clear that .% (R)
is a factor with nontrivial commutant, .#(R) C .&(R) is maximal Abelian, and & (R) =
A(A (R

BSa homomorphism ®:.% — B of C’-algebras is a linear map satisfying ®(!) = 1,
®(4°) = DA)° . and D(4B) = O(A)P(B) for all 4. B € & . and an isomorphism is a
bijective homomorphism.

6 6“} is the Kronecker delta: Jﬂ.ﬂ =1 if a=pf.and (5"‘ﬂ = 0 otherwise.
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T be a nonsingular, free'” action of a countable group G on a measure
space (X,.%,u). Then we can write R as G x X and H as L2(G X
X, 4 x u), where A is the counting measure on G. The algebra &/ (R) is
generated by the operators (M, N)(g, X)=h(Tx)f(g, ), he L™(X,p),
and \L “f) g, x)=f(g"~ g x), & € G. Thisis the M. ray~voa Neumann
group measure space construction in its original setting [MurN1].

(2) The von Neumann algebra of a transitive equivalence relation. Let

X =1{0,.: -1}, u{i})=1/n, i=0,...,n—1,and let R = X x
X. Then u(“(z, j)=1/n forall (i,j)eR, H=C", and & (R) is
generated by the operators (M, f)(j, k) = 6; ;f(j, k) and (L, f)(j, k) =
f(j—itmodn), k),i=0,...,n— 1. In order to realize M(R) explicitly
we define basis elements v, ;€ H, 0<i, j<nby v, (i, )= 8 1)
and write e, for the ith unit vector in C". The map v; ; — €;®e; extends
linearly to an isomorphism of H and C"®C" and sends % (R) to M (C)®
1, , where M, (C) denotes the algebra of all complex 7 x n matrices and 1,
is the nxn idemity matrix, In this picture n, is the trace A®1, — tr(A4) /n.

If X=N, y({i}) =1 forall i€ Z, and R = NxN, the above construction
gives & (R) = (N)) ® 1 ¢ B(I*(N) ® *(N)) ~ B(/*(N?)), where 1 denotes
the identity in B(I (N)). ,

Finally, let X be a finite set, u({x}) =|X |'l for every x € X, and let
RC X XX bean equivalence relation. If B,,..., B, denotes the set of
distinct R-equivalence classes in X (on each of which R is transitive), then
& (R) :M(RBI)@M@M(RB") ~ Mnl(C)@“'@Mnk(C)’ where n, = |B||
for i=1,...,k,and N, is the normalized trace on & (R).

(3) C"-algebras associated with Markov shifts. If R is a nonsingular
equivalence relation on a measure space (X,.”, u), where X is a com-
pact, metrizable space and . is the Borel field of X, and if [R] has a
distinguished countable subgroup of homeomorphisms of X (which hap-
pens, for example, if R = R” for a nonsingular action 7 of a count-
able group G by homeomorphlsms of X), then we can associate a sepa-
rable C-algebra #(R) C &% (R) with the equivalence relation R. From
the poini of view of dynamics, this construction has been particularly use-
ful in the context of Markov shifts (a general construction of C’-algebras
from topological equivalence relations is described in [Ren]). Let X p and
R” be defined as in example 12(3) For every (x,x') € R” satisfying
(1.4) we choose tne mtegers m,m, n n' occurrmg there as small as pos-
sible and put D(x, x') = max{m, m', n, n'}. For every M > 0, the set

A nonsingular action T of G on (X, %, u) is free if u({x € X: Tox = x}) = 0 for
every g # | in G. It is an open problem whether every nonsingular, ergodic equivalence
relation R on (X,.%, u) is of the foom R = R’ (mod u) for a free acticn T of some
countable group G on (X, ., p).
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R (M) = {(x,x") e RP:D(x, x') < M} c X x X is closed and hence com-
pact. Furthermore, if M, < M,, then RP(Ml) C RP(MZ) , and RP(Ml) is
a compact, open topological subspace of RP(MZ) . This allowz us to furnish
R” = Uar>o R® (M) with that topology in which every RP (M) is compact
and open, and R” is locally compact, second countable space in this topol-
ogy. Let [[R 1] be the group' 8 of all komeomorphisms V' of X, which
satisfy the following conditions: (1) {(Vx,x):x € X} C R’ (M) for some
M > 1;(2) the set {x Vx = x} C X, is open. Then [[R”]}x =R"(x) for
every x € X. If S” ¢ R? is the subrelation introduced in Example 1.2(3)
then S°(M) = {(x,x") e S”:D(x, x') € M} C X x X is an equivalence
relation for every M > 0, and [S1* = {V e ([8")):(Vx), = x, forall
X € X, and |k| > M} is a finite group with [SP](M)x SP(M)( ) for every
X € X, . We topologize s’ = U M>OS (M ) as above so that each s? (M) is
a compact, open subset of S.,; , set [[S n=u Mzols ] (#) C [[R 11, and note
that [[SP]]x = SP(x) forevery xe X.
We begin by associating a C*-algebra with the equivalence relation s”

For every M >0 we write C(X )(M ) for the space of complex valued func-

tions on X, which depend only on the coordinates. x_,,, .. xM Let
C(Xp) be the set of continuous, complex valued functions on X,, and
let C C(SP) denote the continuous functions with compact support on s?.
Every V € [[SP}] and 2 € C(X,) defines a linear operator on CC(SP)
by (Lyf)(x,x") = f(¥"'x,x') and (M, f)(x, x") = h(x)f(x,x), [ €
CC(SP). Consider the algebras F(S¥) and & (87)™ C .‘7(SP) generated
by {L,, M,V € [IST],h € C(X,)} and {L,, MV ¢ [S"1™ h e
Cc(X P)(M )}, respectively, where M > 0. As we have seen in Example
(2), & (SPYM is a direct sum of certain finite dimensional matrix alge-
bras M, (C). The completion of & (S”) in the operator norm H-llp ca
the Hilbert space H, = L (SP (uP)(L)) is the desired C* algebralg 14 (S )
P)(M)

of the equivalence relation S*. The algebra |J >0 (S is dense in

#(SF), and #(S") isan AF -algebra.”
For the corresponding one-sided algebras & (S'P) and ?(S’P) (cf. ex-
ample 1.2(4)) we set D(y,y’) = max{m, n} if (v,y') € 8" and op(y) =

laThe countable group [[Rp]] is an ample group in the sense of [Kri7].

Brf @ 1is an arbitrary stochastic matrix compatible with P, and if || - HQ is the operator
norm on ¥ (S”) acting on the Hilbert space Hy = L*(S”, (ug)§” , then |}-||p = I-|| , and
the compleuons of & (S ) in the two norms || - ||, and |- ||Q coincide (cf. [Dix})

By ¢t -algebra & is an AF-algebra if there exists an increasing s*quence (&%, , n 2 1) of
finite-dimensional subaigebras of & such that |J, &, is dense in & (cf. [Bra]— AF stands
for approximately finite dimensional).



