J.M.Rushforth
J. Ll Morris



Computers
and
Computing

J. M. RUSHFORTH and J. LL. MORRIS

The University of Dundee
Scotland

.fOHN WILEY & SONS LONDON NEW YORK SYDNEY TORONTO



Copyright © 1973 John Wiley & Sons Ltd.
AllRights Reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in'any form or by any means,
electronic, mechanical photocopying, record-
ing or otherwise, without the prior written
permission of the Copyright owner.

Library of Congress Catalog Card No. 72-8616
ISBN 0 471 74540 5

Printed in Great Britain by J. W. Arrowsmith Ltd, Bristol



Introductory Mathematics for
Scientists and Engineers

Foreword to the Series

The past few years have seen a steady increase in the courses of mathe-
matics and computing provided for students undertaking higher
education. This is partly due to high speed digital computation being more
readily available and partly because so many disciplines now find mathe-
matics an essential element of their curriculum. Many of the students, e.g.
those of physics, chemistry, engineering, biology and economics, will be
concerned with mathematics and computing mainly as tools, but tools
with which they must acquire proficiency. On the other hand, courses for
mathematicians must take cognizance of the existence of electronic
computers. All these students may therefore study similar material
though possibly at different stages of their careers—some, perhaps,
will encounter it shortly after commencing their training while others
may not come to grips with it until after graduating. This series is designed
to cater for these differing requirements; some of the books are appropri-
ate to the basic mathematical training of students in many disciplines
while others, dealing with more specialized topics, are intended both
for those for whom such topics are an essential ingredient of their course
and for those who, although not specialists, find the need for a working
knowledge of these arecas. However, the presentation of all the books
has been planned so as to demand the minimal mathematical equip-
ment for the topics discussed. Instructors will therefore often be able
to extract a shorter introductory course when a fullér treatment is not
desired.

The authors have, in general, avoided the strict axiomatic approach
which is favoured by some writers, but there has beer no dilution of the
standard of mathematical argument. Learning to follow and construct a

A%



vi Foreword to the series

logical sequence of ideas is one of the important attributes of courses in
mathematics and computing.

While the authors’ purpose has been to stress mathematical ideas
which are central to applications and necessary for subsequent investiga-
tions, they have attempted, when appropriate, to convey some notion of
the connection between a mathematical model and the real world. They
have also taken account of the fact that most students now have access to
electronic digital computers.

The careful explanation of difficult points and the provision of large
numbers of worked examples and exercises should ensure the popularity
of the books in this series with students and teachers alike.

D. S. JONES
Department of Mathematics
University of Dundee



Preface

This book is written for first-year university students who require an
introduction to both computer programmingand to the modern techniques
of numerical analysis. The two topics are developed side by side so that
the student can apply programming techniques to the solution of problems
occurring in the numerical analysis. .

The chapters on numerical analysis are not intended primarily as a
rigorous treatment of the subject, but more as a working text in which the
student can find an outline of the theory behind the various applica-
tions discussed and alio the practical problems assocjated with their
evaluation. :

The programming language described is ALGOL 60, and the reader is
introduced to all the main features of it. One or two features which are
only inf;ic;gucnﬂy used (e.g. switches and own variables) have been omitted,
but a stiident who has a grasp of the language obtained from the chapters
on programming would be well equipped to tackle any problem he is likely
to encounter. ‘ L

In order to get a grézsp of both the numerical analysis and programming
it is necessary to do a good number of the exercises. These exercises are
an integral part of the text. Those in the programming chapters are
specifically aimed at giving practice in the varicus techniques described
in the preceding sections. They do not require a great deal of mathematical
knowledge and it is not necessary to have made a detailed studly of the
numerical analysis sections. The exercises in the numerical analysis
chapters can be successfully attempted by a reader who has understood
the prcgramming techniques so far described.

A student wishing to know more of the mathematical background to
numerical analysis is referred to the following bocks which are published
in the same series as this:

Introductory Analysis: Vols. I and II' by D. S. Jones and D. W. Jordan
Computational Methods in Ordinary Differential EquationsbyJ. D. Lambert

Vil



viil Preface

Computational Methods in Partial Differential Equations by A. R. Mitchell
and to the forthcoming book:

Computational Methods in Elementary Numerical Analysisby J. L1. Morris.

The authors would like to express their thanks to Professor D. S. Jones,
Ivory Professor of Mathematics, and Mr. E. J. Gillespie of the University
Computing Laboratory of the University of Dundee for reading various
parts of the manuscript and offering many helpful suggestions.



1

Contents

An introduction to computers

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.1
L
1.1
[.13
1.1
1.1
1.1
1.1

0
1
2
3
4
5
6
7

Programming languages and operating systems

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29

Introduction .
The program .
Input

The store

Alternative paths in a program .

Output . .
Secondary storage .

The computer configuration
The central processor

The immediate-access store
Data preparation equipment
Output devices

Secondary storage dev1ces
Magnetic tapes .
Magnetic drums and discs
The operator’s console
Computer configuration .

Introduction .

Symbolic assembly language
High-level languages

Algol

Other programmmg languages .

Operating systems .
Autonomous transfers
Multi-programming
Multi-access systems

O OOV O LWL h B WWWNNDND—

—_——

14
14
15
15
16
16
17
17



X

Contents

3  Writing a program

3.1
3.2
33
3.4
3.5
3.6

Introduction .

Preparing a program

Flow diagrams .
Conventions of flow dlagrams .
General flow diagrams

Flow diagrams for a game of golf

Algol: definitions and elementary arithmetic

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

A simple Algol program .
Reserved words

Identifiers

Floating-point numbers
Integer arithmetic
Declarations .

Input of numbers

Arithmetic operaticns
Bracketed expressions
Assignment statements

Input and output instructions
Elementary examples
Standard functions .

The standard functions sign and entier
Integer division

Comment facilities .

Branch points and loops

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Branch points

Conditional statements

Relationai operators

Compound statements .
Conditional statements following else
Designational statements .
Conditional expressions .

Loops

‘For’ statements

5.10 Other examples of ‘for’ statements

19
20
21
24
25
25

30
3

31

32
33
34
35
36
37
38
40
41

42
44
44
45

48
48
49
50
51
53
55
56
57
60



Contents

6 Iterative processes

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9

Introduction . .

The graphical method

The method of false position

The general ‘first-order’ method

The graphical interpretation of the condmon for
convergence . .

The Newton-Raphson method .

The graphical representation of Newton’s method
Some applications of the Newton method .

The relationship between the first-order method and the

Newton method

6.10 An alternative approach where F”(x) = O
6.11 The Secant method . .

7 Interpolation

7.1
7.2
¥:3
7.4
7.5
7.6
7.7
7.8

3.1
8.2
8.3
8.4
8.5
8.6

Introduction .

Lagrangian mterpolatlon

The error term

Jterated linear 1nterpolallon (Altken s mcthod)
Inverse interpolation

Hermite interpolation .
Interpolation using finite dlfferences .
Extrapolation

Numerical integration

Introduction . .
Integration at cqually spaced pomts .
The error terms E,;

Composite rules

Romberg integration

Gaussian integration

9 The block structure of Algol

9.1
9.2
9.3

Algol blocks . .
Use of the same 1dent1ﬁer in nested blocks .
The scope of labels .

xi

62
65
66
70

79
82
86
88

89
91
93

98
105
109
110
114
118
120
129

130
131
135
140
145
150

155
157
158



Xil

Contents

10 Arrays
10.1 Subscripted variables
10.2 Declaration of one-dimensional arrdys
10.3 The use of array elements in assignment statements
10.4 Sorting by interchange
10.5 Multi-dimensional arrays
10.6  Access to arrays
10.7 The use of pointers

11 The use of Boolean variables
11.1 The Boolean variable .
11.2  Operations with Boolean variables .
11.3  Orders of precedence .
11.4 Applications of Boolean operators .
11.5 Survey analysis
11.6 Boolean arrays

12 Procedures
12.1 Introduction
12.2 Parameters .
12.3  Effect of the call of the procedure
12.4 Call by value
12.5 Forms which the parameters can take
12.6 The procedure body
12.7 The procedure head
12.8 Arrays in procedures
12.9 Labels as procedure pardmeters
12.10 String as a procedure parameter
12.11 Function designators
12.12 Procedures and block 5trueture
12.13 Procedures as parameters of procedures
12.14 Recursive procedure calls
12.15 Recursive procedure bodies

13 The solution of systems of linear equations

13.1
13.2
13.3
13.4

Introduction

Matrix algebra .

Direct methods of solution for full systems
Flow diagrams

159
159
160
163
165
166
167

170
172
174
176
177
179

180
181
183
184
185
186
187
187
189
189
190
192
192
194
195

197
200
214
219



13:5
13.6
13.7
13.8
13.9

Contents

Gauss—Jordan method

The number of arithmetic operatlons

nf conditioning

Iterative methods .

Flow diagram for the Gauss— Sexdel method

14 Getting a program to run

14.1
14.2
14.3
14.4
14.5
14.6

Appendix:

Introduction
Compilation errors
Run-time errors
Logical errors
Program checking .
Documentation

Proof of theorem 1, Chapter 6 .

References .

Index .

Xiii
223
225
228

234
239

242
242
243
244
245
245

247

250

251



1

An introduction to computers

1.1 Introduction

Before discussing computers let us look at a common domestic occur-
rence—that of ordering groceries from a shop.

The first thing'we do is to make up a list of what we need ; we then take
this to the shop, or else send the order over the telephene. In either case,
the grocer receives our instructions and uses them for making up the order.
He reads the list and as he comes to each item he takes the goods off the
shelf and adds them to our order. When it is complete he hands it over,
or else puts it aside for delivery later.

The instructions we give the grocer may be a straightforward list of
requirements such as:

31b flour

2 1b butter

21b sugar

11b icing sugar

and so on, but we may also say such things as:

1 1b sultanas, but if you haven’t any
sultanas make it a pound of currants
instead,

or even:
if you haven’t any cherries leave out
the rest of the order.

What we have done is to give the grocer a list of instructions which he
is to carry out and provided he can supply the goods mentioned, we will
get our order properly made up. If he is out of stock of some item, he will
write a note which says ‘Sorry, no tinned pears’—so that we are advised
of any shortages.



2 Computers and computing
1.2 The program

When we use a computer to perform calculations for us, we have to do
very much the same sort of thing as making up our grocery list.

We have to prepare a list of instructions for the computer which will
carry out our calculations. These instructions are known as the program
and are written in a language which can be mterpreted by the computer.
This language will be much more concise than English, and will be
tailored to the needs of our problem.

1.3 Input

When the program is written we have to get the instructions into the
computer and this is similar to the situation of giving the order to the
grocer. This process in computing is known as input and we have to have
special devices to do this. In our parallel case the input device was either
a telephone or th action of passing a list over the counter.

1.4 The store

The computer has a store which can retain information for as long as
is required, and the input device will read the program into this store.
When the whole program has been stored, the program is ‘run’ by starting
at the first instruction and letting the computer carry out each one in turn.
The ‘control’ part of the computer which interprets the instructions and
carries them out is equivalent to the grocer himself who reads the grocery
list and takes each item from his shelves.

Our analogy can be pursued a little further because in computing we
often require to store numbers in our computer, and obviously we must
know where we are putting them, sc that they can be retrieved later. In
just the same way, the grocer knows on which shelf his particular goods
are kept, so that when he gets an order for a tin of pears he knows where
to find it.

We can regard the store of the computer as a set of pigeon holes, each
of which can contain one piece of information. We could number each
pigeon hole and call this number the address of the location. In some basic
programming languages this is done, but it is more usual to attach a name
to each piece of information and allow the computer to choose the address
in which to keep it. It is not usually of interest to us where the computer
keeps the information, just as it does not matter to us where the grocer
keeps his tins of pears—all we want to be able to do is to refer to our
particular item by name and let the grocer (or the computer) look after
the internal organization of the store.



An introduction to computers 3
1.5 Alternative paths in a program

In our example we give an instruction which contained alternative
paths of action. ‘If sultanas are available, then supply 1 1b sultanas other-
wise supply 1 Ib currants.” This type of instruction is available in many
programming languages. Some condition is examined and if this condition
1s found to be true then one course of action follows, if the condition is not
true (i.e. is false), then another course is taken. In our example, when
either sultanas or currants have been supplied the two alternative paths
of action merge together when the next instruction is obeyed.

Our last example shows that we can leave the sequence of instructions
and rejoin it elsewhere. The statement ‘if you haven’t any cherries leave
out the rest of the order’ means ‘if no cherries then jump to end of order".
Once again, in a computer program we can jump from one part of the
program to another, and these jumps can be either forward to instructions
not yet obeyed, or backwards to repeat some instructions which may
already have been given.

1.6 Output

When the grocer has completed his instructions, he either hands over
the goods he has collected, or else he arranges to deliver them later. In
either case we could regard this final action as the ‘result’ of the order.

In order to get results from a computer program we often produce
answers in the form of a printed text. The devices required to produce

" answers in this and other forms are known as output devices.

1.7 Secondary storage -

Besides making up orders for customers, the grocer has to concern
himself with keeping his shelves full, and he will replenish these by bringing
in more goods from his store-room, or by getting further deliveries from
his wholesalers. In both these cases he is going to larger secondary stores
which contain more goods than he can have on his shelves.

It is uneconomical for the grocer to keep his stock on a large area of
shelving immediately accessible to him. What he requires is sufficient of
this shelving to allow him to run his day-to-day business efficiently,
backed up by bulk stock in store-rooms which are cheaper to main-
tain.

He will try to keep his shelves properly stocked so that he doesn’t need
to go to the store-room whilst making up an order, so that time is not lost
during this process. The shelves can be filled in a more leisurely manner
at his convenience. In fact, he can tell his assistant what he requires from



4 Computers and computing

the store-room and let the assistant do the replenishing whilst he is serving
more customers.

This idea of secondary storage is used in computers, because the main
or immediate-access store is very expensive so that only a limited amount
is available. If a great deal of information is to be stored, for instance the
accounts of all the customers of a bank, or the information required to do
the payroll calculations, then this information must be kept in secondary
storage. In a computer this secondary storage consists of different devices
which store information magnetically. We will describe these in more
detail later. .

Another reason for using secondary storage devices is that we do not
normally leave programs in the main store of the computer once they are
finished. The computer has to be used for other purposes. Its use is much
more diverse than the examples we gave when we used our analogy of the
grocer’s shop. In that instance we did all our operations on one set of data
—the contents of the shelves—but suppose the grocer sells his business
and an ironmonger takes it over, then we use the same shop for different
kinds of jobs. In turn the ironmonger may sell to a butcher, the butcher
to an insurance company, the insurance company to a bank, the bank to
a baker and so on. If we can imagine changes like these taking place many
times a day it gives us a better idea of how many different jobs a computer
may be called upon to do.

1.8 The computer configuration

The computer consists of a central processor, immediate-access store
and peripheral devices. The whole is referred to as the computer configura-
tion and this configuration can be varied by choice of processor, size of
store and by the different peripheral devices which can be attached to the
processor.

1.9 The central processor .

The central processor is that part of the computer which can examine
the instructions of a program and cause them to be carried out. It com-
municates with the immediate-access store and all the peripheral devices.
It also does all the arithmetical operations required.

The central processor consists of many complex electronic circuits
which direct information to and collect information from other parts of
the computer system. It also contains registers or accumulators in which
arithmetic operations are carried out and in which information regarding
the state of the program is retained. The electronics of a computer are



An introduction to computers 5

frequently referred to as its hardware, as opposed to software which consists
of programs written to help the user to make full use of the computer’s
capabilities. Most users of a computer need to know little about computer
hardware and can regard the various parts of the computer as ‘black
boxes’ which do what is required of them.

1.10 The immediate-access store

The immediate-access store is the part of the computer which stores all
the informaticn currently being used. it also stores the program instruc-
tions which in turn go to the processor. The store keeps its information
in units called words and these words are recorded magnetically. A
computer's main store may have anything from 8,000 to over a quarter
of a million words in it, and any word can be retrieved by the central
processor within millionths of a second. A miilionth of a second is called
a microsecond, and an access time of one or two microseconds is quite
common.

The access time of some stores is now measured in nanoseconds (1 nano-
second = 1 thousandth of a microsecond) and 750 nanoseconds is
frequently quoted as access time.

With magnetic recording, both in the main store and in secondary
storage devices, we can draw a comparison with the ordinary tape recorder.
When we record, or write, on to our tape recorder we store our voice by
magnetizing an oxide coating on the tape. Once the recording has been
made it can be played back, orread, as many times as we like. If we over-
write the message we have recorded, by recording something else on the
same piece of tape, then the original is lost for ever.

In the same way we can write information into locations in our computer
stores and recall and use it as many times as we like subsequently, provided
we do not overwrite it with some other pieces of information.

1.11 Data preparation equipment

Before discussing the peripheral devices which can be attached to a
computer it is advisable to discuss how we convert the program we have
written on a piece of paper into a form which the computer can read.

One way is to translate our text into a pattern of holes on a continuous
piece of paper tape. We can use a teleprinter consisting of a typewriter
keyboard and a paper-tape punch. Each time a key is depressed a pattern
of holes, called a character, is punched across the paper tape, and the tape
is moved on so that when another key is pressed another character is
punched behind the first.



