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Evolving Fuzzy Neural Network for Camera Operations Recognition

Irena Koprinska, Nikola Kasabov
Department of Information Science, University of Otago, Dunedin, New Zealand
e-mail: {ikoprinska, nkasabov}@infoscience.otago.ac.nz

Abstract

This paper reports an application of evolving fuzzy
neural network (EFuNN) for camera operations recogni-
tion. EFuNN features one-pass learning, dynamical
growing and shrinking architecture and ability 1o
accommodate new knowledge without the need to retrain
the network on both the original and new data. The
network learns from pre-classified examples in the form
of motion vector (MV) patterns, extracted from MPEG
compressed video, in order to distinguish between six
classes: static, panning, zooming, object motion, tracking
and dissolve. The performance of EFuNN is compared
with LVQ and the results are discussed. In addition, the
impact of the number of membership functions and the
contribution of the rule node aggregation are analyzed.

1. Introduction

Camera operations recognition is an important issue in
content-based organization of video dalabases. At the
stage of video parsing, it is critical to distinguish gradual
shot transitions from the false positives due to camera
operations since they both exhibit similar temporal
* variances. Detecting camera operations is also needed at
the step of video indexing and retrieval. Since camera
operations explicitly reflect how the attention of the
viewer should be directed, the clues obtained are useful
for index extraction and key frame selection.

With the widespread use of MPEG, methods for
camera operations recognition that process directly the
compressed stream were proposed. As camera operations
exhibit specific patterns in the field of MVs, most of the
approaches are based on MV pattemns analysis. For
example, Zhang et al. [5] compute measures based on the
MV direction and then used thresholds to recognize
pan/tilt and zoom. Manual tuning of the thresholds,
however, is unlikely to be practical. Patel and Sethi [4]
apply decision trees (DTs) built through a process of
supervised learning to distinguish between zoom, pan,
track, static, object motion and ambiguous. However,
DTs delineate the concept by a set of axis-parallel hyper-
planes which constrains their accuracy in realistic
problems. On the other hand, as only MVs of P frames
are used, the temporal resolution is low. In order to
overcome these problems, a learning vector quantization

0-7695-0750-6/00 $10.00 © 2000 IEEE

(LVQ) [2] that learns from pre-classified MV patterns
from both P and B frames was used in [3]. LVQ, though,
like most of the static neural networks employing super-
vised learning, has predefined topology, requires multiple
passes on the training set and suffers from "catastrophic
forgetting”, i.e. is not capable to accommodate new data
without retraining on both the original and new data.

Overcoming these limitations is highly desirable in
most practical applications, including camera operations
recognition. Recently, evolving fuzzy neural networks
(EFuNN) [1] were introduced as a possible solution. The
goal of this paper is to study the potential of EFuNNs for
camera operations recognition.

2. Evolving Fuzzy Neural Networks

EFuNNs are general purpose fuzzy neural networks
that have a five-layer structure (Figure 1):

Figure 1. EFUNN’s architecture

The input layer represents crisp input variables. The
fuzzy input neurons stand for the fuzzy quantification of
input variables using membership functions. The rule
nodes evolve through leaming and represent prototypes
of data mapping between the fuzzy input and fuzzy output
spaces. Each rule node is defined by two weight vectors:
W1 and W2. The former is adjusted via unsupervised
learning based on the similarity between the fuzzy input
and the prototypes already stored. W2 is updated by LMS
algorithm to minimize the fuzzy output error. The fuzzy
output neurons stand for the fuzzy quantization of the
output variables while the ourpur nodes represent the real
output values. There are several options for EFuNN

growing [1]. We used the 1-of-n method, outlined below.



2.1. EFuNN algorithm

Data pre-porocessing and EFuNN initialization:
1. Normalize current input vector (training example) inp;
in [0,1].
2. Fuzzify inp; using triangular membership functions:
inpF; = fuzzify(inp;) .
3. Set the defuzzifying weights W3 between the fuzzy
outputs and real outputs as:

y

Yomf -1

y, y=1..Y, Y is the number of classes, mf is the number of
membership functions.

, where W3). is the W3 vector for the class

EFuNN’s training:
1. Create the first rule node 1 to represent the first
example: W1, = InpFy, W2, =targe1,
2. While (i<N) (i.e. there are training examples):
i=i+l;
For the i™ fuzzy training example (InpF; target;) :
a) calculate the normalized fuzzy local distance D
between the fuzzy input vector /npF;and the already

stored prototypes in the rule nodes r;, j=1..R, where
R is the current number of rule nodes:

R

Xllon,— ——Wl,l‘

=
DUnpF,r;) = J =
W1,
P ]

b) calculate the activation Al,}, of the rule nodes r;,

J
D(InpF;,r;)

2
c) find the rule node r;« with highest activation Al

d) if Al,, < sThrthen

j=1.R: A1, =1

create a new rule node:
Wi; = InpF;, W2 =target;; j=j+1;
Ise

# propagate the activation of rj« to the action
neurons: A2 = A]’j' -W2,j_
» calculate the fuzzy output error:
Err = A2 -target,;
» find the action node k* with highest A2
w if ((k* #t) or ( Err(k*)>errThr)) then
create a new rule node:
Wi, = InpF;, WZ, =trargel;
J=i+l;
clse update the input and output
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connections of rule node k*:
WU =W +IrL- DGinpF,.r;)
W2 =W 2he +1r2- Erns - Al jx

e) if (i = iAg) then aggregate:
# for each rule node rj»J=1..R find the subset of rule

nodes r,, a=1..A, A<R for which the normalized Eucle
dian distances De,,c(Wl,.j W1 ). DeyeW 2,]_ W2, )
are below the thresholds wiThr, w2Thr, respectively:
m
YWy -wiry?
I P
Drur(wlrl'er“)_ -J;

!

Y W2, -w2 )’

~
Dn«'(W2ri'W2r,)= J -\/7

where m and [ are the numbers of fuzzy input and fuzzy
output nodes, respectively.

~ merge the nodes r, and update Wl,j, WZ,j:

<wlThr

< w2Thr

A A
D w1, ) QW2 )
wi, =2l wo =od
J A J A

r  delete r,,a=1.A;j=j-1;

Classification of new examples by EFuNN

An example that has not been seen during the leamning, is
first fuzzified and then propagated via EFuNN. The
propagation from rule nodes to the output layer is
restricted only for the winning rule node. The example is
classified as an instance of the class y, where y is the
index of the output neuron with the highest value.

To sum up, EFuNN is a dynamic architecture where
the rule nodes grow if needed and shrink by aggregation.
New rule units and connections can be added easily
without disrupting existing nodes. In addition, EFuNN
needs one-pass leaming

3. Data Description
3.1. Classes

Following [3] we consider six classes: 1) static: sta-
tionary camera and little scene motion; 2) panning: came-
ra rotation around its horizontal axis; 3) zooming: focal
length change of a stationary camera; 4) object motion:
stationary camera and large scene motion; 5) tracking:
moving object being tracked by a camera and 6) dissolve:
gradual transition between two sequences where the
frames of the first one get dimmer and these of the second
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Figure 2. MV patterns corresponding to the 6 classes

one get brighter. While four of these classes are camera
operations, object motion and dissolve are added as they
introduce false positives. Each of the classes is characte-
rized by a specific pattern in the field of MVs of P and B
frames in a MPEG encoded sequence, Figure 2. The well-
known benchmark sequences Akiyo, Salesman, Miss
America, Basketball, Football, Tennis, Flower Garden,
and Coastguard were been used in our experiments.
Several aspects of data complicate learning. As it can
be seen from Figure 2, the three static examples have
rather different MV fields. While the frames of Akiyo can
be viewed as ideal static images, there are occasionally
sharp movements in Salesman. The MV field of Miss
America is completely different as the encoder we used
[6] generates MVs with random orientation for the
homogeneous background. Hence, it will be advantage-
ous to use a classification system capable incrementally to
adapt to new representatives of the static class without the
need to retrain the network on the originally used data.

3.2. Feature extraction

Data pre-processing and feature extraction were done
as in [3]. MVs of P and B frames are extracted and
smoothed by a vector median filter. Based on them, a 22-
dimentional feature vector is created for each frame. The
first component is a measure for how static the frame is.
It is calculated as the fraction of zero MVs using both the
forward and backward MV components. The forward MV
area is then sub-divided in 7 vertical strips, for which the
average and standard deviation of MV directions and the
average of MV magnitudes are computed.

In order to build the EFuNN classifier, the MV
patterns of 1200 P and B frames (200 for each class),
have been visually examined and manually labeled.

4. Experimental results and discussion

The goal of the experiments was fourfold: 1) to test the
overall classification performance of EFuNN for camera
operations recognition; 2) to analyze the individual class-
es detection; 3) to find how the different number of fuzzy
membership functions influence the EFuNN performance;
4) to assess the contribution of rule nodes aggregation.

For the evaluation of the EFuNN classification results
we used 10-fold cross validation. Apart from the various
values for mf and wiThr/w2Thr as discussed below, the
EFuNN parameters were set as follows: sThr=0.92,
errThr=0.08, Ir1=0.05, [r2=0.01, nAgg=60.

Table 1 shows the classification accuracy of EFuUNN
with different number of membership functions when
applied for video frames classification. The respective
number of nodes are presented in Table 2. For the needs
of comparison, Table 3 summarizes the results achieved
by LVQ using the public domain package LVQPack [7].

Table 1. EFuNN classification accuracy [%] on the
training and testing set (w1Thr=w2Thr=0.2)

mf | acc. [%] on training set | acc. [%] on testing set
2 858+ 1.5 845+24

3 914 % 1.1 86.8+4.5

4 95.5+0.6 91.6x29

5 95.5+0.4 89.3+4.3

6 95.2+0.9 88.6x4.5

Table 2. Number of nodes for the various EFUNN

architectures (mf=2:6)
mf

nodes 2 3 4 5 6

input 22 22 22 22 22
fuzzy inp.| 44 66 88 110 132

rule 302 | 101.345.5 | 183.1+5.5 { 204.9+9.6 | 229.5+7.9
fuzzy out.| 12 18 24 30 36

output 6 6 6 6 6

total 114 213 323 362 425

Table 3. LVQ performance

accuracy [%] | accuracy [%] nodes (input & training
on training sct | on testing set codebook) epochs
85.4+2.5 85.8+2.2 | 60(22inp., 38 cod.) | 1520

As it can be seen from Table 1, EFuNN achieves best
classification accuracy when 4 membership functions are
used. Further increase in their number almost does not
affect the accuracy on the training set but results in worse
accuracy on unseen examples due to overtraining. On the
other hand, Table 2 indicates that increasing the number
of the membership functions implies-considerable growth
in the number of rule nodes and, hence, the computationa!




complexity of the EFuNN’ training algorithm. As a
result, learning speed slows down significantly. However,
depending on the specific application a suitable trade-off
between the learning time and the accuracy can be found.
The performance of EFuNN compares favourably with
LVQ in terms of classification accuracy (see Table 1,2
and Table 3). Another advantage of EFuNN is that it
requires only 1 epoch for training in contrast to LVQ’s
multi pass leaming algorithms that needs 1520 epochs in
our case study. It should be noted, however, that the LVQ
network is much smaller than the EFuNN architectures.

Table 4. EFuNN classification accuracy [%] of the
individual video classes (mf=1+6)

zoom object

motion.

pan static | tracking | dissolve

100 [97.245.4 | 74.6+12.0 | 95.0+6.6 | 75.9415.6 | 62.1+14.8

100 [92.844.1 | 78.1+12.7 | 97.8+4.4 | 72.9420.6 [ 77.3114.7

100 |97.4+2.8 | 88.1+10.7 | 98.142.5 | 83.0+11.5 | 84.0+10.8

100 |99.0+2.1| 85.0+49.2 | 97.7+3.1 | 69.7421.5 | 85.249.5

=N E E IS b=

100 |94.3+5.2 | 88.4+9.7 {97.743.3 | 63.5118.8 | 87.618.0

Table 4 summarizes the EFuNN classification of the
individual classes. It was found that while zoom and pan
are easily identified, the recognition of object movement,
tracking and dissolve is more difficult. A detailed analysis
indicates that the algorithm actually has difficulties to
discriminate well between these three classes which also
explains the large standard deviations. Despite the fact
that the MV fields of Miss America were not typical for
static videos and complicated learning, they are learned
incrementally and classified correctly by EFuNN.

Figure 4a,4b show the impact of the aggregation on
the classification accuracy and the number of rule nodes,
respectively. Again, 10-fold cross validation was applied
and each bullet represents the mean value for the ten runs.
As expected, the results demonstrate that the aggregation
is an important factor for good generalization and keeping
the net’s architecture at reasonable size. The best perfor-
mance in terms of good trade-off between the recognition
accuracy and net size was obtained for wilThr=w2Thr=
0.15, 0.2. When the aggregation parameters are between
0.25 and 0.55, the accuracy on the testing set drops with
about 10% as the number of rule nodes becomes insuffici-

- - - - acc.[%] on training set
—a— acc.[%) on testing set

~— 100

2 50:"“*8*““\

g \

LS S

0.05 0.2 035 05 065 08
wiThr (=w2Thr)

a)
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number of rule nodes

005 02 035 05 065 0.8
w 1Thr (=w 2Thr)

b) :
Figure 4. Impact of the aggregation on the: a) classi-
fication accuracy and b) number of rule nodes (mf=2)

ent. Further increases in the values of the aggregation
coefficients result in networks with one rule node which
obviously can not be expected to generalize well.

5. Conclusions

An application of EFuNN for camera operations
recognition was presented. EFUNN leamns from examples
in the form of motion vector patterns extracted from the
MPEG-2 stream. The success of the neural net can be
summarized as high classification accuracy and fast train-
ing. Future work will focus on the possibility to further
improve the performance combining image information
with audio features and text captions. The approach will
be also extended to incrementally accommodate new
classes, e.g. other common types of camera operations.
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Adaptive Combination of Classifiers and its Application to Handwritten Chinese
Character Recognition

B.H. Xiao, C.H. Wang and R.W. Dai
Institute of Automation, Chinese Academy of Sciences
dai@ht.rol.cn.net

Abstract

Motivated by the idea of metasynthesis, a new adaptive
classifier combination approach is proposed in this paper.
Compared with previous integration methods, parameters
of the proposed combination approach are dynamically
acquired by a coefficient predictor based on neural
network and vary with the input pattern. It is also shown
that many existing integration schemes can be considered
as special cases of the proposed method. This approach is
tested in application on handwritten Chinese character
recognition. The experimental results demonstrate that
this method can result in substantial improvement in
overall performance.

1. Introduction

Recently, there is a popular belief that featres and
classifiers of different types could complement each other
to some extent, therefore fine combination of multiple
classifiers would result in improvement in performance *
5l However, how to effectively combine multiple
classifiers remains an unsolved problem.

In general, classifier combination strategies can be
divided into two main categories according to the levels of
information produced by various classifiers, i.e. abstract-
level or measurcment-level information.

Abstract-level information includes class labels,
rankings of classes, etc. The abstract-level information is
usually sufficient for problems with a small number of
classes. But for large class set problems such as
handwritten Chinese character recognition, use of only
abstract-level information could lead to many conflicting
decisions which are difficult to handle.

Measurement-level information includes estimatcs of
posteriori probabilities, similarities or distances to
prototypes, fuzzy membership values, etc. If these outputs
are supplied, a sum rule and some other linear
combination have been suggested ). The performance
of combination is, of course, dependent upon the selected
coefficient vector. The question is then how to establish
the appropriate coefficient vector.

0-7695-0750-6/00 $10.00 © 2000 IEEE

In this paper, we focus on classifier combination in the
second category, as the measurement-level outputs are
more discriminative than the abstract-level outputs for
large class set problems. Motivated by the idea of
metasynthesis [, we develop a common adaptive
combination framework for this kind of classifiers.
Compared with previous integration methods, parameters
of this combination approach are dynamically acquired by
a coefficient predictor based on supervised learning neural
network (NN) and vary with the input pattern. That is to
say, our goal is no longer to find an optimal coefficient
vector, but to find an optimal coefficient predictor. It is
also shown that under different assumption and using
different approximations, many existing combination
schemes can be derived, such as majority voting, weighted
voting, dynamic classifier selection and classifier fusion
based on linear static model. In a handwritten Chinese
character recognition (HCCR) experiment where three
classifiers were used to discriminate between 3755 classes,
the results of comparative study demonstrate the
surprising effectiveness of this adaptive classifier
combination approach.

This paper is organized as follows. In Section 2, the
adaptive classifier combination scheme is formulated and
some commonly used combination strategies are also
derived. Section 3 gives three individual classifiers for
handwritten Chinese character recognition, and expatiates
on the implementation of the adaptive combination.
Experimental results are compared in Section 4. Finally,
Section 5 offers discussion and concluding remarks.

2. Theoretical framework of
classifier combination

adaptive

2.1. Individual classifiers

Consider a pattern recognition problem where an input
pattern X is to be assigned to one of m possible classes.
Let S represents the m possible classes, and C represents
the n available classifiers.

S={s,}, and C={Cj};=‘; )



such as images, is not obvious. Much of the literature re-
garding fractal analysis has been concerned with the esti-
mation of fractal dimension, given a discrete data set. An
important aspect of a fractal object is its fractal dimension.
In order to understand the concept of a frcatal dimension,
we will introduce the Hausdoiff dimension.

Hausdorff dimension is the dimension singled out by
Mandelbrot when he defined “fractal”. It is perhaps a bit
more difficult to define than some of the other kinds of di-
mension that have been (and will be) considered. There ex-
ist a variety of fractal dimensions. Among them, Hausdorff
dimension is the most useful of the fractal dimension be-
cause it is suitable for any sets and based on a mathematical
tool — measure theory, which makes analysis easy.

For any set F' and § < 1, Hi(F) is a non-increasing
function of s. It can be shown that H*(F) is also a non-
increasing function of s. In fact, the stronger conclusion is
that if ¢ > 0 and {U;} is a -cover of F, we have

Hj(F) < ZIUEI‘ <ot ZIU,-l’.

1

(1)

We take the infimum, that is
H§(F) < 8 *H}(F).

Definition 1 Let § — 0, if H*(F) < oo, then H(F) =
0 for s < t. Therefore, there exists a critical value of s,
such that H*(F) jumps from oo to O at this point. This
critical value is called the Hausdorff Dimension of F, and it
is symbolized by dimp F.

Formally, we have

dimyF =inf {s: H*(F) = 0} = sup {8 : H*(F) = o0},
)
and if dimygF
s _ (e ¢] s<awmyg
HNE) —{ 0 ifs>dimyF
If s = dimg F', probably H*(F) is 0 or cc, or may sat-
isfy
0< H%F) < 0.
A Borel set is called an s-ser if the latter condition as shown
in the above is satisfied.

3. Algorithms for Estimating the Fractal Di-
mensions

One of the basic characteristics of a fractal is its dimen-
sion. Estimates of the dimension tend to be very inaccu-
rate as data size is reduced. There is a measurement of
the complexity of a geometric object, which we will com-
monly call the “fractal dimension,” although there are sev-
eral varying concepts and terms, the big brother of which is
the Hausdorff-Besicovitch dimension.
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3.1 Computing 1-D Divider Dimension

Box computing dimension is one of the most widely used
dimensions. Its popularity is largely due to its relative ease
of mathematical calculation and empirical estimation.

Let F' be a non-empty and bounded subset of IR", € =
{wi:1=1,2,3,...} be covers of the set F. N5(F) denotes
the number of covers, such that

N§(F) =€ : di < 6],

where d; stands for the diameter of the i-th cover. This
equation means that N;(F') is the smallest number of sub-
sets (with length §) which covers the set F, and their diam-
eters d;’s are not greater than 4.

The upper and lower bounds of the box computing di-
mension of F' can be defined by the following formulas:

'
dimpF = liminf 282 N6(F) 3)
— 60  —log, 6
w—— . _ ——logy Ns(F)
dimp F = Jim =5 g5 ()

where the overline stands for the upper bound of dimension
while the underline for lower bound.

Definition 2 If both the upper bound dim g F" and the lower
bound dim g F are equal, i.e.

log, Ns(F) _ ml()gz Ns(F)

limi =
y o —log, 8 -0 —log,d

§—0

bl

the common value is called box computing dimension or box
dimension of F, namely:

log, Ns(F)

dimg F = gxm ~log,

—0

)

Further discussions on fractal theory can be found in
[3]. The modified box computing dimension method gives
a very good estimate of fractal dimension. It can be eas-
ily shown that computation complexity of other approaches,
including the original box counting dimension, is much
higher than that of this approach. Thus it has the advantages
of simplicity in computation and improvement in efficiency.

3.2 Estimating 2-D Fractal Signature

To compute the fractal dimension, we need to measure
the area of the gray level surface. The idea of the blanket
technique is based on the equivalent definition of the box
computing dimension. In the blanket technique, all points
of the 3-D space at distance § from the gray level surface
are considered. For example, the image is represented by a
gray-level function g(i, 7). The covering blanket is defined



by its upper surface u;(i,j) and its lower surface b5(1. j).
Initially, 4 = 0 and given the gray-level function equals the
upper and lower surfaces, namely:

9(i.7) = uo(i,5) = bo(i, 4)-
Ford = 1,2, ..., the blanket surfaces are defined as follows:

i, 7) = s—1(1.7) +1
us(i, 1) mu{%,ujr+, (oA

bé(lu]) = min {bo_l(l,]) 1’ ](m,n;r—"(?,j)lfl
(N
A point f(z,y) will be included in the blanket for § when
bs(z,y) < f(z,y) < ug(z,y). The blanket definition uses
the fact that the blanket of the surface for radius 4 includes
all the points of the blanket for radius § — 1, together with all
the points within radius 1 from the surfaces of that blanket.
Eq. (7) ensures that the new upper surface u; is higher than
us—1 by at least 1, and also at a distance of at least 1 from
ug—1 in the horizontal and vertical directions.
The volume Vols of the blanket is computed from u;s
and by:
Vols =) (us(i, ) = bs(i, 4))-
i,j
In this subsection, computing fractal dimension by mea-
suring surface area will be presented. The basic idea s that a
2-D pattern can be mapped onto a gray-level function. Fur-
thermore, this function can be mapped onto a surface which
can be used to approximate its fractal dimension.
As the volume Vol of the blanket is measured with ra-
dius 4, the area of a fractal surface can be deduced, which
is called fractal signature (FS)

_ Vols

(3)

As % )
or Vols — Vol
A5 = 0—6_2—““‘ (10)

According to the definition of Minkowski Dimension and
[4], the area of a fractal surface is:

A(6) = B8* P, 6=1,2,..,

from which the fractal dimension D can be computed.
Since the dimension can be regarded as a slope on a log-
log scale, only two points are needed to get the dimension.
We use two values of § to compute the fractal dimension,
namely, we take § = 4, and 4, then

As, = B87P, Ag, ~ 820
From Eq. (11), we have

(11)

‘sl ~
~
.45,

&P

§2-o-

bs—1(m.n)
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Taking the logarithm of both sides yields:

logy As, — log, 45,

2-D= S
log, 8; — log, 42

log, A;s, —log, As,

D=2-
log, 6; — log, d2

(12)

ug_y (m, n)} Thus, the fractal dimension D has been computed.

4. Application

Two applications of the fractal theory are presented in
this section, namely: (1) the fractal technique is used to ex-
tract the features for 2-D objects; (2) the fractal signature is
employed to identify different scripts.

4.1 Applying Fractal Technique to Feature Ex-
traction

Pattern recognition requires the extraction of features
from the regions of an image, and the processing of these
features with a pattern classification technique. In particu-
lar, this approach reduces the dimensionality of a 2-D pat-
tern by way of a central projection method, and thereafter,
performs Daubechies’ wavelet transform on the derived 2-
D pattern to generate a set of wavelet transformation sub-
patterns, namely, curves that are non-self-intersecting. Fur-
ther from the resulting non-self-intersecting curve, the di-
vider dimensions are readily computed. These divider di-
mensions constitute a new feature vector for the original 2-
D pattern, defined using the curves’ fractal dimensions, see
in Figure 1.

Figure 1. The feature extraction by wavelet
sub-patterns and divider dimensions for the
Chinese character “Heart"

The recognition rates obtained in the 3000 Chinese char-
acters using our new approach is almost 99.8%, and the
traditional method of extraction from the HV-projections is
only 64%. The fractal technique is significantly faster than
the traditional method based on Fourier transformation.
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Indian Language

Figure 2. Samples of different oriental lan-
guages

4.2 Classification of Oriental Language Using
Fractal Signature

The fractal method is applied to classify the different lan-
guages, such as shown in Figure 2, with three samples. The
basic idea of the experiment is that an image of a document
printed in a kind of language can be mapped onto a gray-
level function. Furthermore, this function can be mapped
on to a surface which can be used to approximate its fractal
dimension. In order to extract the structure information of
a document, fractal signature will be used. From the def-
inition of the fractal signature, i.e. Eq. (9), it is clear that
the fractal signature is completely determined by the area
of the surface. The surface is a mapping of the gray-level
function which represents a document image of oriental lan-
guage. Consequently, the fractal signature reflects certain
characteristics of the document image of oriental language.
We can obtain the results of classification of three scripts
from the fractal signature trend in Figure 3. These prelimi-
nary results indicate that discrimination based on the fractal
signature of document images may well represent a viable
approach to utilizing computers to assist in multifarious lan-
guage classification.

5. Conclusions

In this work, we presented the results which aimed at
showing that, within the field of image analysis, it is pos-
sible to use fractal feature based on the estimating fractal
dimension to extract information that is relevant in object
recognition tasks. The experiment results show that this ap-
proach allows us to obtain new and interesting descriptions
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Figure 3. An example of oriental languages
classification

of complex patterns. In some situations, it has even already
yielded better results than “classical” methods. For all the
cases, differences in fractal dimension can yield the signi-
ficative values.
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Abstract

In this paper a technique for the construction of invari-
ant features of 3D sensor-data is proposed. Invariant grey-
scale features are characteristics of grey-scale sensor-data
which remain constant if the sensor-data is transformed ac-
cording to the action of a transformation group. The pro-
posed features are capable of recognizing 3D objects in-
dependent of their orientation and position, which can be
used e.g. in medical image analysis. The computation of
the proposed invariants needs no preprocessing like filter-
ing, segmentation, or registration. After the introduction of
the general theory for the construction of invariant features
for 3D sensor-data, the paper focuses on the special case
of 3D Euclidean motion which is typical for rigid 3D ob-
Jects. Due to the fact that we use functions of local support
the calculated invariants are also robust with respect to in-
dependent Euclidean motion, articulated objects, and even
topological deformations. The complexity of the method is
linear in the data-set size which may be to high for large
3D objects. Therefore approaches for the acceleration of
the computation are given. First experimental results for
artificial 3D objects are presented in the paper to demon-
strate the invariant properties of the proposed features.

1. Introduction

In many areas of research 3D datasets become increas-
ingly important {5]. All applications which use 3D sensor-
data (acquired by sensors which scan objects of the real
world, e. g. medical imaging or process tomography) must
cope with undesirable transformations. These transforma-
tions result from the different properties of the sensor or
the scanning method. All these transformations act as ge-
ometrical and/or grey-scale based transformation on the
data. To apply methods of digital image processing and
pattern recognition it is helpful to construct features which

are invariant with respect to the transformations mentioned
above.
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Different approaches for the construction of invariant
features have been developed during the last decade. They
can be divided into the following three main categories [2]:

Normalization methods extract salient features of an ob-
ject (like center point, main axes) and normalize the object
with respect to these. Their robustness, however, is limited
by the quality of determining the salient features.

Differential approaches are based on Lie groups. Invari-
ant features must be insensitive to infinitesimal variations
of the parameters of the transformation group. Therefore
invariants can be constructed by solving differential equa-
tions that have been obtained by setting partial derivatives
with respect to the transformation parameters to zero. How-
ever, solving the partial differential equations often is a
quite complex task.

Integral approach: The equivalence class of an object
forms an orbit in object space. The idea is to average
arbitrary functions evaluated on the orbit (Haar integrals)
[6,9, 12]. It is clear that the integral over the entire orbit is
invariant to the transformation group.

A second categorization of methods can be done into
grey-scale based approaches and geometry based ap-
proaches:

Grey-scale based approaches use the full sensor infor-
mation for describing objects and deriving invariant fea-
tures. An example for a grey-scale based method for the
recognition of 3D objects are moments [3].

Geometry based approaches reduce an object’s represen-
tation to its geometrical primitives (points, lines, ellipses
etc.) instead, thus neglecting the object’s texture informa-
tion. An overview of different geometry based approaches
for the recognition of 3D objects can be found in [8, 4].

In this paper an integral, grey-scale based approach for
the construction of invariant features for the recognition of
3D objects is proposed. It is based on an averaging op-
eration over the Euclidean transformation group [13]. We
would like to point out that the proposed method is not re-
stricted to grey-scale objects but can be applied to other
sensor-data like color, multi-band etc. as well.



The remainder of this paper is organized as follows: First
we introduce the terminology used in this paper. In section
3 we then propose our method for the construction of invari-
ant 3D grey-scale features. This is treated not only theoret-
ically but we also discuss practical aspects like the efficient
implementation. Section 4 then presents first results apply-
ing the method to artificial 3D data. Finally we conclude
our paper in section 5.

2. Terminology

We model a 3D dataset as a mapping M : P® C
N3 [0,...,V],x = M[x], with x = (z,y,2)T, and
z,y,z € [0,..,N—-1],V € R, N € IN. Possible 3D
datasets can be 3D volume images, 3D geometric data or 3D
depth images [15]. The action of geometrical transforma-
tions on the 3D sensor-data may be described by the action
of a transformation group G.If M denotes the transformed
dataset of M we can write M = gM, g € G. This means
we have to transform the entire dataset M by the group ele-
ment g. Alternatively we can compute the coordinates X of
the transformed pattern gM with X = g~'x. We can write
M|x] = M[x]. To put it differently, either we transform the
whole dataset M by g or we transform the coordinate x by
the inverse group element g~'. Two patterns M and M are
called equivalent, M £ M, if one pattern is the result of the
action of an element g of the transformation group G on the
other, i.e. M EMe dgeG: M = g M. In this paper
the proposed features map the pattern space to IR. A feature
F is invariant with respect to the action of a transformation
group G if F(gM) = F(M)Vg € G.

3. Constructing invariant features for 3D

In [13] a method for the construction of invariant features
for 2D grey-scale images by averaging over the transforma-
tion group is presented. Averaging over a group G can be
written as

Alf)(M) = ‘—é—\ f f(gM)dg, W
G

where the fraction in front of the integral is used to nor-
malize the averaging result by the volume of the group G.
Equation (1) is also called invariant integration. For com-
pact and finite groups we define the volume |- | of a group G
as |G| := [ dg. Itis evident that the result is invariant to
any transformation of g € G. The existence of a complete
feature set can be shown for compact and finite groups [12].
In this paper we extend this approach to 3D and develop
a method for the construction of invariant features for 3D
sensor-data.
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To evaluate ( 1) one has to choose a parameterization € of
the group G. Since the parameterization can be arbitrarily
chosen. the results of the integrations over the same pattern
M with different parameterizations should be equal. This
is in general not the case. Each parameterization has its
own distribution in parameter space. To make the integral
independent of the chosen parametenization, one has to de-
termine a measure p(£€) which weights the volume elements
dg of the integral. The measure p(£) is called invariant mea-
sure and guarantees the independence of the integral from
the parameterization used.

Due to the fact that we want to construct invariant fea-
tures for the rotation and translation in JR® (Euclidean mo-
tion) we will now focus on the Euclidean transformation
group. The Euclidean group can be defined by the ro-
tation group SO(3) and the translation group G as the
Cartesian product Gg := SO(3) x Gr. For both groups
we must determine the invariant measure to derive a pa-
rameterized invariant integration formula. The translation
group G can be parameterized by (¢, ty,¢.)7, which de-
fines the translation vector t. To obtain a finite translation
group Gr all translation parameters are understood mod-
ulo N. For the translation group Gr the invariant mea-
sure amounts to unity. Now we have to choose a suitable
parameterization for the rotation group SO(3). By using
Cayley-Klein parameters [7] and the rotation angle and axis
parameterization (2,0, ¢) for SO(3) the invariant mea-
sure can be calculated as shown in [7] to p(f2,0,p) =
0.5sin?(0.50) sin(0) dp dO dQ. The group volume of
the Euclidean group Gg for the selected parameteriza-
tion (2,0, ¢) can be determined to |Gg| = m2N3. Re-
member that the invariant measure of the translation group
amounts to unity, therefore the volume of the translation
group amounts to N'® (the number of voxels of the 3D data-
set). The final formula for the invariant integration over the
Euclidean group G g with rotation angle and axis parame-
terization £ = (2, 1y, t;,$, ©, ) can be given now as:

Ao =a [ £ (9gM)sin*(;R)sin(@) 28, @
Ge

where a is a constant factor defined as a := (2r2N3)~1,
3.1. Efficient evaluation

The interpretation of the invariant integration in equa-
tion (1) shows that the straightforward calculation for more
complex functions of f requires high computation power.
For each group element g the pattern M is transformed and
a function f is calculated from the resulting pattern gM.
The result of f must be weighted with the invariant measure
which depends on the chosen parameterization. Finally the
total integral is determined from all results of f. The sum is
normalized by the group volume |G g|.



Using the rotation axis and angle parameterization the
action of the group element gg can be formulated as

9eM =M [Rd,x—t]. (3)
Examination of this equation reveals the following: Assume
a constant vector of translation t. We know that the rotation
matrix R is an element of SO(3), so the transformed point
X = Raéwx moves around —t on a sphere with radius
|x — t| if we vary the parameters (2, ©, ).

What happens if we introduce the function f. Let us se-
lect monomials f(M)=H?=1 a;M(x;)P*. We define the cor-
responding radius r; by r; = |x; —t|. Inserting equation (3)
into the monomial f results in:

d
fgeM) = [JaM [R;}gq,xi - t] " (4)
i=1

where d denotes the number of product terms in the mono-
mial f. The radii r; define the sizes of the spheres on which
the points X; move. Evaluating the expression (4) for a
given (£2, ©, ¢) reveals the following: We have to build the
product of d terms. For each term we must calculate the
power p; of the grey-scale value M at the position X; — t
multiplied with a;. This is a local operation in the neighbor-
hood of point t. Since we have to integrate over all transla-
tions t the local computation must be done for all elements
of the pattern M. This interpretation leads to the follow-
ing two step strategy for efficient evaluation of formula (2).
First, for every point of the 3D pattern a local function f is
evaluated. In the second step the total integral of all local
results is calculated.

3.2. Sampling of the spheres

We now discuss the problem of sampling for an imple-
mentation of the method. To ensure a sampling of uniform
density on the sphere we use the following approach: In
the case of 2D the sampling of the circle with radius R can
be defined over a maximum arc length between two adja-
cent sample points. The maximum arc length defines an
upper limit for the sampling. For radius R = 1 it should
be sufficient to choose a maximum arc length of at least
Smax = m/4. Based on the arc length we can determine
the offset angle A© between two adjacent sample points:
AO(R) = n/[4R]. Sample points which do not lie on
the grid must be interpolated, e.g. by trilinear interpola-
tion. For a given angle © the radius of the equator circle
is calculated as R¢ = Rsin(8). Evaluating the same con-
dition with the arc length for the offset anzle A® leads to
AO(R) = 7/[4Rsin(©)]. The radius R is defined by the
maximum radius of the spheres which must be sampled. On
the right side of figure 1 a correct sampling of a sphere is
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shown. Our proposed method for the sampling of a sphere
is only an approximation. To increase the quality of the
sampling it might be necessary to decrease the maximum
arc length Spax- A detailed derivation of the algorithm for
the computation of 3D invariants can be found in [11].

Figure 1. On the left side an incorrect sam-
pling method is shown, the right side shows
a correct sampling.

3.3. Computational Complexity

As mentioned above the algorithm consists of a two step
strategy. For each voxel of the 3D volume data we have to
evaluate a kernel function f. As we use functions of local
support the calculation time is independent from the data-
set size. After all local evaluations we have to sum all lo-
cal results. Thus, the computational complexity is O(N?)
which is linear in the data-set size. For large data-set sizes
this results in long processing time. We give two possi-
bilities for acceleration of the method: parallel/distributed
processing and stochastic sampling.

As the major amount of calculation time is needed within
local computations the method can be easily implemented
on parallel or distributed hardware without high communi-
cation overhead. E. g. in [1] the parallelization of the algo-
rithm is described for 2D grey-scale features.

Another possibility for high speedup is to estimate the
features by a Monte-Carlo method instead of calculating
them deterministically [14]. The basic idea is not to eval-
uate f on all samples of figure 1 but to evaluate f only
on n random uniformly distributed samples: A[f](M) =
1y f (gE‘M),with random £. Thus, one obtains an error.
This, however, can be estimated with the following Gaus-
sian distribution accuracy estimation formula:

ev/n

— | >1-
V(f(ge M))

) (5

N O

with € being the error bound, 4 being the probability of ex-
ceeding this error, V(.) being the variance and ®(.) being
the integrated standard normal distribution. To give a con-
crete example: Set € = 0.01 and § = 5%. Choosing kernel



functions f(gM) € [0, 1] we obtain

V(f(gM)) = E(f*(gM)) - E(f(sM))* <1

1 >0

(6)

and therefore n > 38416, i.e. constant complexity. This,
however, requires that the application allows for some un-
certainty in the features, e. g. when the class distance is big
compared to €.

4 Experiments

First experiments with artificial 3D objects were done to
show the invariant properties of the proposed features. The
results are based on [11]. We have created binary volume
images with a cuboid, a sphere and a pyramid as objects.
The dimensions of the volume images were 64x64x64.
Voxels belonging to the objects were set to value 255. The
remaining voxels which surround the objects were set to
zero. All objects have the same object volume. The mean
grey-scale value', which defines a trivial invariant feature
with respect to the Euclidean motion, is not able to discrim-
inate between these objects. Three more objects were de-
fined by cutting each object into two parts. Thus, the total
number of classes which were defined for the experiments
was six. In figure 2 rendered images of the unseparated ob-
jects are shown. Rendered images of the separated volume
objects are shown in figure 3.

Figure 2. Unseparated artificial 3D objects
used in the experiments.

Figure 3. Separated artificial 3D objects used
in the experiments.

Each of the reference objects was transformed by a
translation or rotation. The parameters of the Euclidean

'The mean grey-scale value can be constructed using the monomial
f(M) =M[0,0,0}.
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transformations are denoted by k 1,...,5, where
9« = (0z,0y,0:,tz,ty,t;). The applied transforma-
tions were g; = (0,0,0,0,0,0). go = (0,0,0,10,5,7),
g3 = (O»Ov %v070v0)' 94 = (0,‘%,0,0,0,0), and g5 =
(5,0,0,0,0,0). We have defined the following classes cor-
responding to ¢ = 1...6: cuboid, sphere, pyramid, separated
cuboid, separated sphere, and separated pyramid. Including
the reference objects we generated five objects per class.
Thus, the total number of objects used was 30. For each
object we calculated 40 invariant features with monomials
of second and third degree. Nearly all invariant features
were able to discriminate all classes individually. Table 1
presents the results for a weighted Euclidean distance of all
features. The class “cuboid” can be discriminated well from
the other classes. The distance between the class “separated
sphere” and “separated cuboid” is smaller by several orders
of magnitude. The classes with the greatest distance be-
tween each other are the class “sphere” and the class “sepa-
rated sphere”.

c 1 2 3 4 5 6
1 0.0 40990.1 93735 426327 74910 27545.7
2 | 40990.1 0.0 542268 1606  32418.1 10100.7
3 93735 542268 0.0 574695 17268.6  37640.6
4 | 426327 160.6  57469.5 00 334954 10237.0
5 7491.0  32418.1 17268.6  33495.4 00 201538
6 | 275457 10100.7 37640.6 102370 201538 0.0

Table 1. Weighted Euclidean distances be-
tween the mean values of the features of the
object classes c.

Further experiments were made in [10] to analyze the ro-
bustness of the proposed invariant features: the volume im-
ages including the surrounding background were disturbed
by additive Gaussian noise of different signal-to-noise ra-
tios. Different classes could still be discriminated for rea-
sonable SNR. In first experiments we used real MR images
to show the functionality of the method [10].

5 Conclusion

In this paper we proposed a technique for the construc-
tion of invariant grey-scale features for 3D sensor-data. The
proposed features are capable of recognizing 3D objects in-
dependent of their orientation and position and can be used
e.g. in medical image analysis. The construction of the
proposed invariant features does not depend on any prepro-
cessing, e.g. filtering, segmentation, or registration. We
first derived the underlying theory and then developed a
two step strategy for the efficient computation: The first
step consists of the local evaluation of a nonlinear function
f for each element of the 3D dataset. In the second step
the total integral is build from all local results. The com-



putational complexity is linear in the data-set size, which
may be too high for large 3D objects. Therefore possibil-
ities for acceleration by parallel/distributed processing or
by stochastic sampling have been discussed. First experi-
mental results with artificial 3D objects were presented in
the paper to demonstrate the invanant properties of the fea-
tures. A total number of six classes were defined for the
experiments. The classes were composed by the reference
object and transformed objects. Five objects were used per
class. All classes could be discriminated well by the invari-
ant features. Intended areas of applications are medical vol-
ume images, €. g. magnetic resonance images. We are also
looking into the possibility to use this algorithm for content
based volume image retrieval.
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Abstract

The structural health of airframes is often monitored by
analysis of the frequency of occurrence matrix (FOOM)
produced after each flight. Each cell in the matrix records a
stress event of a particular severity. These matrices are used
10 determine how much of the aircraft’s life has been used
up in each flight. Unfortunately, the sensors that produce
this data are subject to degradation themselves, resulting
in corruption of FOOMs. This paper reports a method of
automating detection of sensor faults. It is the only known
method that is capable of detecting such faults. The method
is in essence a dimensionality reduction algorithm coupled
to a novelty detection algorithm that produce measures of
unusual counts of stress events at the level of the individ-
ual cell and unusual distributions of counts over the en-
tire FOOM. Cell-level error is detected using a probability
threshold and a sum of standard deviations. FOOM-level
error is detected using a novel application of the Eigen-
face algorithm. Novelty is measured using a mixture of
Gaussian model of the data, fitted using the Expectation-
Maximisation algorithm.

1 Introduction

The structural health of airframe structures is commonly
monitored by a series of strain gauges. During a flight, any
deformation and return to a static state is called a stress cy-
cle. Each cycle is classified as a particular event using the
mean and extreme loads of the stress cycle. Counts of stress
events during a flight are stored in frequency of occurrence
matrices, or FOOMs. By examining FOOMs from each
flight, the structural health of the aircraft can be monitored
[4]). Corrupted FOOMs need to be identified to ensure that
the structural health of the aircraft is monitored accurately.

There are two classes of sensor fault. The first is a ran-
dom addition of counts that can be caused by (for exam-
ple) electromagnetic current faults. These spurious counts
are distributed either randomly throughout the cells in the
FOOM, or accumulate in a single (spike) cell in the ma-
trix. The second type of fault (response shift) is caused by
a shift in the response of a sensor to the loads it monitors.
This change distorts the distribution of counts that should
arise as a result of the manoeuvres accomplished during the
flight. It has the effect of distorting the distribution of gen-
uine counts in the FOOMs and is rarely visually apparent.
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Our approach to the detection of sensor fault is to exam-
ine the variability of FOOMs from normal flights both at
the level of the individual cell and at the level of the whole
FOOM. Our strategy is to apply a number of statistical mea-
sures to sets of example FOOMs and use these as inputs to
a novelty detector. The measures include a Gaussian model
of each cell in the FOOM coupled with an Eigenface repre-
sentation of data developed by Turk and Pentland [5]. These
measurements provide a compact representation of FOOM
data without making any assumptions about the underlying
distributions of stress cycle counts. In an earlier paper [3],
the authors examined the use of a Multi-Layer perceptron
(MLP) for the classification of sensor faults. This scheme
required data from faulty sensors to be available for train-
ing. Here, we circumvent this problem by using a novelty
detection scheme as our flight classifier. The novelty detec-
tor algorithm uses the Expectation-Maximization algorithm
of Dempster, Laird and Rubin [2] to fit a Gaussian basis
function model to the parameterised data. The advantage of
using a novelty measure is that any unusual flight will be de-
tected, providing changes are evident in the measurements
we are using.

Figure 1. Graphical representation of a FOOM.
Counts are clustered around the low-stress
region of the FOOM, shown here as the bright
region along the left hand side of the image.

2 The Frequency of Occurrence matrix

During a flight, a stress cycle is a deformation and return
to a constant load of the airframe. The FOOM is a two-
dimensional triangular histogram of these stress cycles [4].
The mean of the stress cycle determines the horizontal posi-
tion in the FOOM of the cell that will be incremented. The
difference between the maximum and minimum load of the
cycle is called the alternating stress, and determines the ver-



