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Preface

This volume contains the papers presented at the 29th Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2004, held in Prague, Czech
Republic, August 22-27, 2004. The conference was organized by the Institute for
Theoretical Computer Science (ITI) and the Department of Theoretical Compu-
ter Science and Mathematical Logic (KTIML) of the Faculty of Mathematics and
Physics of Charles University in Prague. It was supported in part by the Euro-
pean Association for Theoretical Computer Science (EATCS) and the European
Research Consortium for Informatics and Mathematics (ERCIM).

Traditionally, the MFCS symposia encourage high-quality research in all
branches of theoretical computer science. Ranging in scope from automata, for-
mal languages, data structures, algorithms and computational geometry to com-
plexity theory, models of computation, and applications including computational
biology, cryptography, security and artificial intelligence, the conference offers a
unique opportunity to researchers from diverse areas to meet and present their
results to a general audience.

The scientific program of this year’s MFCS took place in the lecture halls
of the recently reconstructed building of the Faculty of Mathematics and Phy-
sics in the historical center of Prague, with the famous Prague Castle and other
celebrated historical monuments in sight. The view from the windows was a chal-
lenging competition for the speakers in the fight for the attention of the audience.
But we did not fear the result: Due to the unusually tough competition for this
year’'s MFCS, the admitted presentations certainly attracted considerable inte-
rest. The conference program (and the proceedings) consisted of 60 contributed
papers selected by the Program Committee from a total of 167 submissions.
These are accompanied in the proceedings by abstracts or full versions of the
10 invited talks. It has already become a tradition that EATCS offers a Best Stu-
dent Paper Award for the best paper submitted to MFCS and authored solely
by students. The winner of the award was announced during the conference.

As the editors of these proceedings, we would like to thank everyone who
contributed to the success of the symposium and to its scientific merit. First of
all the authors of the contributed papers for the record number of submissions,
the invited speakers for accepting our invitation and sharing their knowledge
and skills with us, the Program Committee members for their demanding and
responsible work, their subreferees for careful reading of all the submissions,
Springer-Verlag for excellent cooperation in the publication of this volume, and
last but not least the Organizing Committee and Action-M Agency (our partner
responsible for the local arrangements) for smooth running of the symposium.
We hope the attendees all had a fruitful and enjoyable time in Prague.

August 2004 Jif{ Fiala
Véclav Koubek
Jan Kratochvil
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A Case Study of Genome Evolution: From
Continuous to Discrete Time Model*

Jerzy Tiuryn!, Ryszard Rudnicki?, and Damian Wéjtowicz'

1 Institute of Informatics, Warsaw University
2 Institute of Mathematics, Polish Academy of Sciences

Abstract. We introduce and analyse a simple model of genome evolu-
tion. It is based on two fundamental evolutionary events: gene loss and
gene duplication. We are mainly interested in asymptotic distributions
of gene families in a genome. This is motovated by previous work which
consisted in fitting the available genomic data into, what is called para-
log distributions. Two approaches are presented in this paper: continuous
and discrete time models. A comparison of them is presented too — the
asymptotic distribution for the continuous time model can be seen as a
limit of the discrete time distributions, when probabilities of gene loss
and gene duplication tend to zero. We view this paper as an intermediate
step towards mathematically settling the problem of characterizing the
shape of paralog distribution in bacterial genomes.

1 Introduction

Fitting data into various kinds of plots is a common practice of modern biol-
ogy. A typical case is a study of genome organization and evolution, which can
be viewed as a branch of a relatively new area of computational biology, called
comparative genomics (see [9]). We can view a genome not simply as a set of
genes, but rather as a dynamic collection of genes which changes in time. Vari-
ous biochemical processes (e.g. point mutation, recombination, gene conversion,
replication, DNA repair, translocation, horizontal transfer) constantly act on
genomes and drive them to evolve dynamically. A problem which has been ad-
dressed in late 90’s in this framework is an estimate of the distribution of paralogs
in a genome. Two genes in a genome are said to be paralogs if they have evolved
through duplication from a single ancestral gene. We do not discuss here the
important issue of deciding which genes are paralogs. We assume that all genes
have been clustered into groups of pairwise paralogous genes. The question which
was asked in 1998 by P. Slonimski ([12,13]) and independently by M.A. Huynen
and E. van Nimwegen [3] was about the distribution of the numbers of i-element
clusters of paralogous genes (for consequtive i's) in several microbial genomes
which have been sequenced till then. The distribution was estimated by fitting

* This research was partially supported by the State Committee for Scientific Research
(Poland) Grants No. 2 PO3A 031 25, and 7 T11F 016 21 and by the EC programme
Centres of Excellence for States in phase of pre-accession, No. ICA1-CT-2000-70024.

J. Fiala et al. (Eds.): MFCS 2004, LNCS 3153, pp. 1-24, 2004.
© Springer-Verlag Berlin Heidelberg 2004



2 J. Tiuryn, R. Rudnicki, and D. Wéjtowicz

the available data. Since the method of deciding paralogy is only approximate
and the size of the genomes was not large, as a consequence both authors came
up with different answers: [12] claims that the distribution is logarithmic, while
[3] claims that it follows the so called power law distribution. In 2001 Jordan
et al. [4] have analysed 21 completely sequenced bacterial genomes and claimed
that the logarithmic approximation fits the distribution slightly better than the
power law approximation, although the difference between the two fits is not
significant.

It should be obvious from the above description that it will be impossible to
decide what actually is the observed distribution if we rely merely on the bio-
logical data. A decisive answer should come by adopting a certain mathematical
model of genome evolution together with a rigorous analysis of the asymtotic
distribution within this model. This is the main motivation for the present paper
to build and analyse a simple model of genome evolution. The model we study is
very simple indeed. It addresses only two evolutionary events: gene loss and gene
duplication. Even though it is too simple to settle the problem of distribution
of paralog families in genomes it can be used to study various subtleties of the
model. We treat this paper as an intermediate step towards analysis of a more
complicated model, which we postpone for future publication.

There is a short history of mathematical modeling of genome evolution. In
2000 Yanai et al. [16] designed a simple model of genome evolution based on
random gene duplication and point mutations. The paper did not analyse the
model. The main result consisted in showing that it is possible for each of the
20 microbal genomes to tune the parameters of the model so that the obtained
distribution matches closely the paralog distribution of the genome. Recently
Koonin’s group has published in a series of papers [8,5,6,7] a simple model (called
BDIM) of genome evolution which resembles our continuous time model. How-
ever, there are two important differences between the two models. In BDIM
model in addition to gene loss and duplication there is an external source of new
genes, called invention. This source is used to stabilize the asymptotic behavior
of the model, i.e. to make sure that the supply of genes does not vanish at some
point of evolution. On the contrary, we are interested in asymptotic distribu-
tions for the two extreme situtations: genome collapse and genome explosion.
The reason for this is that if we assume that the two events: gene loss and gene
duplication are independent of each other, it follows that we have to assume
that their probabilities should not be equal. This leads the model to one of the
two extreme situations. The second difference is more important. BDIM model
sets an upper bound on the maximal size of gene family in the model. Techni-
cally speaking, this assumption implies that the system of differential equations
is finite and the theory of finite dimentional matrices is applicable here. In the
model which we investigate in this paper we do not impose any bound on the
maximal size of a gene family and we end up with an infinite system of dif-
ferential equations, for which existence of stationary solutions needs a special
justification (see Theorem 1).
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Continuous time model represents an ideal situation: in one unit of time two
or more events can happen to a single gene, even though the probability of this
is very low. In discrete time model we assume that in one unit of time every
gene of the genome is subject to exactly one of the following events: removal,
duplication, idle; each with a fixed probability. So, discrete time model is an
approximation (and simplification) of the continuous model. Discrete model is
much more suitable for computer simulations. Also, as we will see, the asymptotic
distributions for both models are always different. The analysis of the discrete
model is apparently more complicated, presumably due to lack of strong analyt-
ical tools. Moreover, as it follows from one of our results (see Theorem 7), the
distribution for a continuous model can be seen as a limit of the discrete time
distribution, when the probabilities of gene loss and duplication tend to zero.
Another noteworthy property of the discrete model is a very nice isomorphism
(see Theorem 8) between the situation of genome collapse (i.e. when Prob(gene
duplication) < Prob(gene loss)) and a genome explosion (when Prob(gene du-
plication) > Prob(gene loss)). This allows us to reduce the latter situtation to
the former. It appears that direct analysis of genome explosion is very difficult
since the distribution looks more like a uniform distribution on an infinite set.
The discrete model presented in this paper is in the same spirit as the model of
DNA evolution presented in [14,15].

The paper is organized as follows. Section 2 contains a description of results
for the continuous time model, together with asymptotic distributions for genome
collapse (Theorem 2) and explosion (Theorem 3). Section 3 is devoted to discrete
time. In particular we give a charcterization of a generating function for the
asymptotic distribution for collapse (Theorem 6). All longer proofs are moved
to the Appendix.

2 Continuous Time Model

Before we start a description of the genome evolution, let us introduce all entities
used in our model: genes, gene families, class of gene families and genomes. Genes
are atomic units, i.e. we do not assume any internal structure of these objects.
A genome is a finite set of all genes. A gene family in a genome is a set of genes
of that genome which are paralogs. We group families according to their size.
Classes are sets of gene families which have the same number of elements, i.e. S
is a class 1 if every family in S has ¢ elements!. One gene duplication in a family
belonging to class i results in relocation of this family from class 7 to class i +1.
Conversely, one gene removal relocates the corresponding family to class i —1 or
eliminates this family if 4 = 1. In this section, we consider time to be continous.

We assume that the probability of a gene duplication to happen during time
interval of length At is d - At + o(At). Similarly, probability of gene removal
in time interval At is r - At 4+ o(At). It is assumed that lima:—o ﬂAA—:I = 0.
Moreover, we assume that all elementary events (gene duplication and removal)
are independent of each other.

! Obviously, a class may include families that are completely unreleted biologically.
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Let C;(t) be the number of i-element families in our model at the time ¢. It
follows from the description of our model that we have the following equations
which describe an increment AC;(t) = Ci(t + At) — Ci(t) during time interval
At:

AC1(t) = —(d + r)C1(t) At + 2rCa(t) At + o( At)

and
ACi(t) = d(i — 1)Ci_1(t) At — (d + 7)iCi(t) At + (i + 1)Cit1(t) At + o At),

for i > 2.
Hence, dividing both sides of the above equations by At and passing with
At to 0, we obtain the following infinite system of differential equations:

Ci(t) = d(i — 1)Ci—1(t) — (d + 7)iCi(t) + (i + 1)Cit1 (2), 1

where i > 1. The above equation for i = 1 reduces to C1(t) = —(d + r)Ci(t) +
2rC,(t), independently of the value of Cp(t). We assume that the latter is just
Co(t) = 0. Let us also observe that C;(t) =0, for i > 1 and t € R is a (trivial)
solution of (1).

Theorem 1. If r > 0 and d > 0, then for each non-zero and non-negative
absolutely summable sequence (Ci(0));>1 equation (1) has a unique solution such
that C;(t) > 0 for all t > 0 and all positive integers i.

The remainder of this section is devoted to the asymptotic behavior of a
solution of (1), as t — oco. It turns out that the behavior of the system is quite
different, depending on whether r > d, or r < d. In the former case all genes are
eventually removed, while in the latter case we have an exponential explosion of
the number of genes in the genome. We consider each case separately.

2.1 Collapse of the Genome: r > d

The next result characterizes an asymptotic behavior of solutions of (1) when
r>d.

Theorem 2. Let (C;(t))i>1 be non-negative and non-zero solution of (1). If
r >d > 0, then there exists a constant ¢ > 0 such that for all i > 1,

d.
: (r=d)t , . — . (2)
tll)r{.loe Ci(t) =c (r) :

Hence for sufficiently large ¢ the number C;(t) of i element gene families has the
following asymptotics

Cilt) ~ e e~ (B,

for all 1 > 1.




