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Preface

For many years I have felt the need for an introductory text in linear pro-
gramming with applications in statistics and other disciplines. This book is
based in part on course notes for a two semester sequence in mathematical
programming for advanced undergraduate and first-year graduate students in
economics, statistics, operations research, mathematics, and business, which |
taught at lowa State University.

In the book, I have emphasized the importance of the relationship
between theory and computational techniques. The first three chapters
emphasize the basic concepts and properties of linear programming through a
hypothetical production example and a scheduling problem. The graphic
method is used to provide a conceptual understanding of certain salient prop-
erties of linear programming. Thus, the book begins at an elementary level to
help the student more easily grasp the main ideas of linear programming that
form the core of mathematical programming. With this approach, topics such
as sensitivity analysis, parametric programming, and other computational
techniques are covered in a manner easily understood by students from any
discipline.

The theory of linear duality is presented next and is followed by topics
such as the Kuhn-Tucker theory. Other topics covered in linear programming
emphasize statistics. Chapters 6 and 7 cover the transportation and assign-
ment problems. Chapter 8 discusses goal programming under a preemptive
priority structure.

The appendix discusses the use of IBM’s Mathematical Programming
System, MPSX, and/or Management Science’s System, MPS-III. This mate-
rial distinguishes this book from other linear programming texts. Since most
students, especially at the graduate level, want a computer package to solve
research problems, and most colleges and universities have IBM computers or
compatible computers, the book discusses some relevant computer packages.
Procedures related to the text, such as sensitivity analysis and parametric pro-
gramming, are included.
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For a one-semester undergraduate course Chapters 1-3, 6-8, and Appen-
dix A can be covered, as well as various parts of the remaining chapters as
time allows. In Chapter 4, for instance, linear duality can be studied without
the proof of Lemma 4.6 or Appendix B, which discusses relevant concepts over
convex cones. The first half of the text emphasizes linear programming models
and computational techniques; it also covers the theoretical derivation of the
simplex method and certain related linear programming topics, such as alter-
native criteria in curve fitting, and chance-constraint programming.

Students should have some knowledge of Chapters 1-3 or a good back-
ground in linear programming and matrix theory if the text is used in a grad-
uate course, which would cover Chapters 4-8.

[ am indebted to my family for helping me to pursue all of my objectives
in writing this text. I would like to thank Darlene Wicks for her superb techni-
cal typing. My indebtedness also extends to many, not least of all lowa State
University, the statistical laboratory, and the computation center, which pro-
vided facilities, intellectual stimulation, and encouragement, without which
this text might never have been written. I owe special thanks to Oscar Kemp-
thorne and H. T. David for their constant encouragement and valuable com-
ments after critically reading parts of this manuscript. I am also indebted to
H. T. David and D. J. Soults who introduced me to this field of study and who
taught me more than I know how to acknowledge. The author is indebted to
Carla Tollefson for her valuable suggestions in the final editing of this text.
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Introduction

1.1 Historical Perspective of Mathematical Programming

One of the first questions asked by various early scientists was: “How can
one determine the best or optimal values in some restricted space so that these
values will yield the greatest (or least) possible numerical value to some math-
ematical expression?”

These mathematical problems could take many forms, depending on the
problem at hand, but the general mathematical programming problem can be
expressed as

maximize (or minimize) f(x)
such that g;(x) = b, i=1,2,....m (1.1)

That is, f(x) and each g;(x) are real-valued functions of x (in £"), where the
vector b is known. Special cases of (1.1) are linear programming models that
can be written as

maximize Y _ ¢;x;

such that a,,x, + @x, + + « « + a;,x, < b,
anX) + apXy + -+ + aypX, < b,
A Xy + AppXy + ¢ 0 ¢« + AppXy = bm
,\'}.20 j=1.2,...,ll

or

maximize ¢'x
such that Ax <b

x>0
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This was one of the earliest models to be considered. In particular, Fou-
rier, a French mathematician, had formulated these types of models for use in
mechanics and probability theory around 1826. In 1939, the Russian mathe-
matician Kantorovich formulated production problems as linear program-
ming problems and suggested a possible way of solving such models.

The general area of research in linear-programming-type problems came
into its own during World War Il when large-scale military operations
required careful planning of logistic support. This led to mathematical tech-
niques known as operations research techniques. Linear programming was one
of these techniques. The primary contributor in establishing procedures to
solve linear programming models was George Dantzig. His general algorithm,
known as the simplex algorithm, was developed in 1947. Subsequently, inter-
est in this area grew, and in 1949 T. C. Koopmans organized in Chicago the
Cowles Commission Conference on Linear Programming. The papers pre-
sented in this conference were collected by Koopmans in 1951 in the book
entitled Activity Analysis of Production and Allocation.

Charnes, Cooper, and Henderson wrote the first textbook on linear pro-
gramming. Since then the number of texts in this area has grown tremen-
dously, with applications in agriculture, economics, engineering, statistics,
mathematics, and business.

Karush in 1939 and Kuhn and Tucker in 1950 addressed themselves to
the nonlinear mathematical programming problem. Their work has proven to
be a classic. It has led the way to solutions of quadratic programming prob-
lems—i.e., models with linear constraints and objective functions of the form
¢'x + x'Dx. Moreover, the Karush—-Kuhn-Tucker theory has led to the area of
duality through the saddle value approach. That is, associated with a mathe-
matical programming problem is another problem that, when solved, yields
the optimal solution to the original problem, and conversely. The saddle value
problem is formulated with Lagrangian functions for inequality-type restric-
tions.

Since the late 1940s and early 1950s, the area of mathematical program-
ming has branched to many types of models. For one, geometric programming
in the late 1960s has come into its own. These problems have proven quite
popular in engineering-type models. The early pioneers in this area were Duf-
fin, Peterson, and Zener.

1.2 Examples of Programming Problems

Consider the linear regression model

Vi=Bo+ Bix; + d;
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where y; is the ith observation on a dependent variable, x; is the ith observation
on an independent variable, and d; is a random disturbance. Then the classical
least squares theory leads to estimates of 3, and 3, that will minimize

0(Bo, B)) = Z (yi — Bo — lei)z =(y — XB)'(y — XB)

or minimize the sum of squares of errors. Q(83,, §,) is a quadratic function of
Boand By;i.e., Q(Bo, B1) = 27 + ¢'B + B'DB where

¢ =-2yX and D=XX

In this case 8 is unrestricted, so one can find estimates that minimize
0(B,, B)) by solving the well-known normal equations

X'XB = X'y

In certain cases, certain limits or constraints are imposed on 3, 3,, or both.
For example, assume the researcher desires a positive intercept and a value of
the slope between £ and u. Then we must

minimize  Q(Bo, 81)

subjectto =0, =u
Bo=0

which is now a quadratic programming problem.

Another researcher with the same set of measurements might also want to
find estimates of B3, and 3, for the above linear model, but believes it is more
“reasonable” to determine values of 8, and 3, that will minimize the sum of
absolute deviations; i.e.,

minimize Y |y — Bo — Bix; |

Whether or not we have restrictions imposed on our model, the values of
B,and 8, that minimize the sum of absolute deviations can be reformulated as
a linear programming problem. In particular, let d,; denote the positive devia-
tions (and d,; the negative deviations) above (below) the fitted line for the ith
observation. Then for any i,

Yi=Bo+ Bix; + di; — dy
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where at most one d|; or d,; can be nonzero by the nature of the problem. Also,
d\; + dy is the absolute deviation between the fitted equation and y;. We
therefore have the following linear programming problem:

minimize Y _(d,; + dy)

such that X@ + Id, — Id, =y
d], d2 = 0

which will yield the best estimates of 8, and 3, under the criterion of minimiz-
ing the sum of absolute deviations.

Another example of a programming problem is that of an investor trying
to determine a security portfolio from a set of n securities that will hopefully
provide at least a certain return at the least possible risk. Here, we assume the
variance based on past performances of a security is a measure of the risk that
the realized rate of return deviates from the expected rate of return, y,;. The
covariance, o;, of their returns provides a measure of the correlation between
the rates of return on securities i and j. When ¢;; is positive, this would imply
that the returns on the securities will usually go up and down together. There-
fore, a rational investor would not invest too heavily in a set of securities that
seem to move together. In this case, we would do well to diversify our portfolio;
sacrificing return for risk reduction and measuring covariance between securi-
ties will enable us to achieve this required diversification.

To minimize risk arising from variability within a security and risk from
an undiversified portfolio, we would minimize the function x'Sx. S is the co-
variance matrix determined from past performances of the securities. Terms
of the type x/s; account for variability within a security, and terms of the type
x;x;s; account for the covariance between securities. If the investor wants at
least a rate of return of p percent, based on d dollars, then we have the follow-
ing quadratic programming problem:

minimize Xx'Sx
such that Zux; = p
2x; =1

x;=0 i=1,2,...,n

where x; denotes the amount of the d dollars to be invested in security .

1.3 Plan of Book

The objective of this text is to discuss, first, linear programming models
and computational techniques that are highly useful in areas of economics and
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business applications. Second, linear duality in the spirit of the Kuhn-Tucker
theory is presented. These concepts will be applied to various statistical prob-
lems. In particular, generalized properties of regression estimators under the
criteria of minimizing the sum of absolute deviations, L,, are given in Chapter
5. Computational procedures based on these properties are subsequently pre-
sented.

Chapter 6 considers the transportation problem. Computational algo-
rithms are presented. Moreover, it is shown how this problem is related to the
analysis of variance problem under L,.

The final chapter on “Goal Programming” shows how to solve such prob-
lems using IBM’s MPSX/370 Mathematical Programming System. This
extension allows researchers to solve goal programming problems with as
many as 10,000 rows and over 100,000 variables with a high degree of preci-
sion.

The text was written for a senior level undergraduate course or a first-
year graduate course in linear programming with statistical applications. The
theoretical derivation of the simplex method is covered, and certain related
linear programming topics, such as sensitivity analysis and parametric pro-
gramming, are discussed.



2 Linear Programming

2.1 Introduction

Linear programming is by far the most widely used optimization tech-
nique. Linear programming deals with the problem of determining feasible
plans that are optimal with respect to a certain agreed upon linear objective
function; in particular, it determines a plan that maximizes or minimizes some
linear function over all possible feasible plans. The feasible plans are such that
they must satisfy certain restrictions that are usually in the form of a system of
linear inequalities. Hence, linear programming is defined in terms of a mathe-
matical model composed of linear functions, where the word “programming”
is used as a synonym for planning. Thus, linear programming involves choos-
ing activities (plans, schedules, allocations) in such a way as to obtain an opti-
mal program. Here an optimal program is defined as a feasible plan that max-
imizes (or minimizes) the objective function from among all possible feasible
plans.

The great variety of problems to which linear programming can be
applied is indeed remarkable. It is used in curve-fitting problems under dif-
ferent criteria such as minimizing the sums of squares, minimizing the maxi-
mum deviation, or minimizing the sum of absolute deviations. It is used in
portfolio or investment problems, in transportation problems, in allocation
problems, in production scheduling, in game problems, and in numerous other
areas. In particular, consider the problem of finding x,, x,, . . ., x, that

maximizes (or minimizes) the linear function z = ¢, x; + ¢,x,

+ oo+ oCpx,
subjectto  a;x; + apx, + - - - + a,x, = b
AyX| + ApXy + + + + + GX, < b,
X + AppXy + =+ + + AppX, < b,
Xy Xgy o ooy X, =0
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where g, b;, and ¢; are known constants. The unknown variables x;(j=1,2,
..., n) can be solved by linear programming techniques.
Expressed in matrix notation, the problem is to find a vector x in E” that

maximizes (minimizes) ¢'x
subject to Ax <b
x>0 (2.1)

The next section illustrates some problems that can be expressed in terms
of a linear programming model. Section 2.3 considers some geometric inter-
pretations of linear programming that will give valuable insight to certain fun-
damental properties and concepts. Section 2.4 discusses a procedure based on
the Gauss-Jordan technique for obtaining a consistent solution of a system of
linear equations and determining a vector that maximizes the specified objec-
tive function. The theoretical derivation of the simplex procedure is deferred
until later in the chapter.

2.2 Linear Programming Models

EXAMPLE 2.1 Activity-analysis problem (Karlin 1959, p. 174)

A manufacturer has the option of using one or more of four types of produc-
tion processes. The first and second processes yield items A, and the third and
fourth processes yield items B. The inputs for each of these processes are labor
measured in work-weeks, pounds of raw material X, and boxes of raw material
Y. Since each process varies as to its input requirements, the profits of the pro-
cesses differ, even for processes producing the same item. Now suppose further
that the manufacturer has fixed amounts of labor, raw material X, and boxes of
raw material Y. Hence, the manufacturer, in deciding on a week’s production
schedule, is limited in the range of possibilities by the available amounts of the
three resources. The manufacturer wants to determine how much of the two
products should be manufactured and which processes should be used to maxi-
mize profits.

Table 2.1 gives a breakdown of how much of each resource must be used to
produce an item by each process, the profit associated with that item, and the
limitation on each resource.

This problem has four decision variables and three restrictions. One is
tempted to use the process (or processes) that produce items with the highest
unit profit in order to maximize profits. However, the interdependence encoun-
tered in order to allocate the resources in the “best” manner makes an intuitive
approach invalid, as shown later in the chapter. Presently we are only interested
in the proper formulation of the linear programming model.



