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Editorial Policy

§ 1. Lecture Notes aim to report new developments - quickly. informally. and at
ahigh level. The texts should be reasonably self-contained and rounded oft. Thus
they may. and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals. usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag.
Heidelberg . These proposals are then referced. A final decision concerning
publication can only be made on the basis of the complete manuscript. but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter. and an indication of the
estimated length. a bibliography. and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction. perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated:

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Introduction

Explicit formulas in number theory were originally motivated
by the counting of primes, and Ingham’s exposition of the classical
computations is still a wonderful reference [In 32]. Typical of these
formulas is the Riemann-von Mangoldt formula

3 logp =z - Z = (h/6a(0) - 5 logl1 — 7).

p*<z

Here the sum on the left is taken over all prime powers, and the
sum on the right is taken over the non-trivial zeros of the Riemann
zeta function.

Later, Weil [We 52] pointed out that these formulas could be
expressed much more generally as stating that the sum of a suitable
test function taken over the prime powers is equal to the sum of the
Mellin transform of the function taken over the zeros of the zeta
function, plus an analytic term “at infinity”, viewed as a functional
evaluated on the test function.

It is the purpose of these notes to carry through the derivation
of the analogous so-called “explicit formulas” for a general zeta
function having an Euler sum and functional equation whose fudge
factors are of regularized product type. As a result, our general
theorem applies to many known examples, some of which are listed
in §7 of [JoL 93c]. The general Parseval formula from [JoL 93b]
provides an evaluation of the “term at infinity”, which we call the
Weil functional. Also, as an example of our results, let us note
that even in the well-studied case of the Selberg zeta function of
a compact Riemann surface, our computations show that one may
deal with a larger class of test functions than previously known.

For some time, analogies between classical analytic number the-
ory and spectral theory have been realized. Minakshisundaram-
Pleijel defined a zeta function in connection with the Laplacian
on an arbitrary Riemannian manifold [MiP 49|, and subsequently
Selberg defined his zeta function [Se 56]. In [JoL 93a,b] we devel-
oped a general theory of regularized products and series applicable
equally to the classical analytic number theory and to some of these



analogous spectral situations. In particular, we proved the basic
properties of the Weil functional at infinity in the context of regu-
larized products and series, with a view to using the functional for
the explicit formulas in this general context.

A fundamental class of zeta functions. In [JoL 93c] we de-
fined a fundamental class of functions to which we could apply these
properties and carry out analogues of results in analytic number
theory. Roughly speaking, the functions Z in our class are those
which satisfy the three conditions:

- there is a functional equation;

- the logarithm of the function admits a generalized Dirichlet
series converging in some half plane (we call this Dirichlet
series an Euler sum for Z);

- the fudge factors in the functional equation are of regular-
1zed product type.

The precise definition of our class of functions is recalled in Chapter
IT, §1. The explicit formula can be formulated and proved for
functions in this class. In Chapter II, §1, we discuss the extent to
which this class 1s a much broader class than a certain class defined
by Selberg [Se 91]. Furthermore, certain applications require an
even broader class of functions to which all the present techniques
can be applied. We shall describe the need for such a class in
greater detail below.

Just as we did for the analogue of Cramér’s theorem proved
n [JoL 93c¢], we emphasize that the explicit formula involves an
inductive step which describes a relation between some of the zeros
and poles of the fudge factors and some of those of the principal
zeta function Z. Such a step can be viewed as a step in the ladder
of regularized products, because our genéralized Cramér theorem
insures that a function Z in our class is also of regularized product
type provided the fudge factors are of regularized product type.

If Z is a function in our class, and, for Re(s) sufficiently large,

the expression
«(q)
log Z(s) =
Zq: qs

is the Euler sum for log Z(s), with a sequence {q} of real numbers
> 1 tending to infinity, and complex coefficients c(q), then such
q play the role of prime powers. However, readers should keep in
mind cases when q does not look at all like a prime power. For ex-
ample, the general theory applies to the case when Z(s) is a general



Dirichlet polynomial, up to an exponential fudge factor; a precise
definition is given in Chapter II, §4. Such polynomials contain as
special cases the local factors of more classical zeta functions and
L-functions. In examples having to do with Riemannian geome-
try, logq is the Riemannian distance between two points in the
universal covering space.

The general version of Cramér’s theorem in [JoL 93c| was carried
out for the original Cramér’s test function ¢.(s) = e**. One can
also view this version as a special case of an explicit formula with
more general test functions. This is carried out in Chapter II. In
[JoL 93c], §7 we gave a number of examples for our Cramér-type
theorem. To these we are adding not only the general Dirichlet
polynomials as mentioned above, but also Fujii-type L-functions,
obtained from a zeta function by inserting what amounts to a gen-
eralized character as coefficient of the Dirichlet series defining the
zeta function (see the papers by Fujii listed in the bibliography).
In Chapter V we show both how to recover Fujii’s theorems for
the functions he considered, namely the Riemann zeta function
and the Selberg zeta function for PSL(2,Z), as well as an anal-
ogous theorem for the general zeta functions in our class, all as
corollaries of our Cramér’s theorem. Similarly, a result of Venkov,
which relates the eigenvalues of the Laplacian relative to PSL(2,7Z)
to the classical von Mangoldt function, will be generalized to any
non-compact finite volume hyperbolic Riemann surface in [JoL 94].
The generalization involves another inductive type argument, us-
ing the fact that the fudge factor in the functional equation of the
non-compact Selberg zeta function involves the determinant of the
scattering matrix, which itself is in our class of functions since it
has an Euler sum and a simple functional equation with constant
fudge factors. In this case, the Euler sum exists whereas a classical
Euler product does not. Thus, the general theory simultaneously
contains previous results and gives new ones which were not proved
previously by authors using such tools as the Selberg trace formula.

Analytic estimates for the proof. In addition to the Parse-
val formula of [JoL 93b], the proof of the general explicit formula
relies on certain analytic estimates for regularized harmonic se-
ries, including the logarithmic derivatives of regularized products
in strips. We gave such estimates already in [JoL 93a,b], but we
need further such estimates which we present in Chapter I of the
present work, using the technique of our generalized Gauss formula.
Hard-core analytic estimates having thus been put out of the way,
the rest of the work is then relatively formal. It is noteworthy
that to each regularized product we associate naturally two non-



negative integers determined directly from the definition. Then the
fundamental estimates of Chapter I show that the order of growth
of the logarithmic derivatives of such products in strips is deter-
mined by these two integers. In the application to the evaluation
of certain integrals involving test functions, one can then see that
the order of decay of these test functions, needed to insure that the
integrals converge, is also determined by these two integers. Our
systematic approach both improves known estimates for the Sel-
berg zeta function (cf. Chapter I, §4), and provides estimates for
functions in our class which had not been considered previously.

Theta inversions. We shall postpone to still another work the
application of explicit formulas to the counting of those objects
which play the role of prime powers. Here we shall emphasize an
entirely different type of application, obtained by taking Gaussian
type functions as the test functions instead of other test functions
which lead to the counting. Applying the general explicit formula
to such Gaussians gives rise to relations which are vast general-
izations of the classical Jacobi inversion formula for the classical
Jacobi theta function, where ¢ on one side gets inverted to 1/t on
the other side of the formula. The classical Jacobi inversion formula
is the relation

(e ] oo

1 2 1 —(27n)?
2_7r Z ent___ — Z e(2n)/4t’

n=—oo n=-—oo

which holds for all ¢ > 0. Here, logq = 27mn where n is a positive
integer. The zeta function Z(s) giving rise to the above theta series
is essentially the special Dirichlet polynomial

) 1
sin(mis) = ——e™ (1 — e72™),
21
Thus, the most classical theta series appears in a new context,
associated to a “zeta function” which looks quite different from
those visualized classically.

The general context of Chapter IV and Chapter V allows a for-
mulation of a theta inversion when the theta series is of type

§ ake—Akt
k

with various coefficients ax. Theta inversion applies in certain cases
when the sequence {A;} is the sequence of eigenvalues of an oper-
ator. For example, as we will show in Chapter V, §4, such an



inversion formula comes directly from considering the heat kernel
on the compact quotient of an odd dimensional hyperbolic space
which has metric with constant negative sectional curvature.

For certain manifolds, the theta inversion already gives rise to
an extended class of zeta functions, which instead of an Euler sum
may have a Bessel sum. For manifolds of even dimension, the
class of functions having an Euler sum or Bessel sum is still not
adequate, and it is necessary to define an even further extended
class, which we shall describe briefly below. At this moment, it is
not yet completely clear just how far an extension we shall need,
but so far, whatever the extension of the fundamental class we have
met, the techniques of [JoL 93a,b,c] and of Chapter I apply.

In [JoL 94], we show how the general explicit formula also applies
to the scattering determinant of Eisenstein series. Here, the Euler
sum exists, and scattering determinants are in the fundamental
class.

An additive theory rather than multiplicative theory,
and an extended class of functions. The conditions defin-
ing our fundamental class of functions are phrased in a manner
still relatively close to the classical manner, involving the functions
multiplicatively. However, it turns out that many essential prop-
erties of these functions involve only their logarithmic derivative,
and thus give rise to an additive theory. For a number of appli-
cations, it is irrelevant that the residues are integers, and in some
applications we are forced to deal with the more general notions of
a regularized harmonic series (suitably normalized Mittag-Leffler
expansions, with poles of order one) whose definition is recalled
in Chapter I, §1. In general, the residues of such a series are not
integers, so one cannot integrate back to realize this series as a log-
arithmic derivative of a meromorphic function. Even for the Artin
L-functions, although they can be defined by an Euler product, it
was natural for Artin to define them via their logarithmic deriv-
ative, and at the time, Artin could only prove that the residues
were rational numbers. It took many years before the residues
were finally proved to be integers. The systematic approach of
[JoL 93a,b,c] in fact has been carried out so that it applies to this
additive situation. The example of Chapter V, §4, shows why such
an additive theory is essential.

Thus we are led to define not only the fundamental class of func-
tions whose logarithmic derivative admits a Dirichlet series expres-
sion as mentioned above, but an extended class of functions where
this condition is replaced by another one which will allow appli-



cations to more situations, starting with applications to various
spectral theories as in [JoL 94]. Nevertheless, we still defined the
fundamental class of functions having Euler sums, and we phrase
some results multiplicatively, partly because at the present time,
we feel that a complete change of notation with existing works
would only make the present work less accessible, and partly be-
cause the class of functions admitting Euler sums is still a very
important one including the classical functions of algebraic num-
ber theory and representation theory. However, we ask readers
to keep in mind the additive rather than multiplicative formalism.
Many sections, e.g. Chapter I and §1 and §2 of Chapter V, are
written so that they apply directly to the additive situation.

Functions in the multiplicative fundamental class are obtained
as Mellin transforms of theta functions having an inversion formula.
Functions in the extended additive class are obtained as regularized
harmonic series which are Gaussian transforms of such theta func-
tions. For example, the (not regularized) harmonic series obtained
from the heat kernel theta function in the special case of compact
quotients of the three dimensional, complete, simply connected,
hyperbolic manifold is essentially

¢r(z)¢k(y)
Z s(s —2)+ M\

Observe how the presence of s(s — 2) in the series formally insures
a trivial functional equation, that is invariance under s — 2 — s.

Conversely, given a function in our extended additive class, one
may go in reverse and see that the original theta inversion is only
a special case of the general explicit formula valid for much more
general test functions. The existence of an explicit formula with
a more general test function will then allow us to obtain various
counting results in subsequent publications.

Finally, let us note that many examples of explicit formulas using
various test functions involving many examples of zeta functions
have been treated in the literature, providing a vast number of
papers on the subject. Most of the papers dealing with such explicit
formulas are not directly relevant for what we do here, which is to
lay out a general inductive “ladder principle” for explicit formulas
in line with our treatment of Cramér’s theorem. For instance,
Deninger in [Den 93] emphasizes the compatibility of an explicit
formula for the Riemann zeta function with a conjectural formalism
of a Lefschetz trace formula. Such a formalism might occur in the



presence of an operator whose eigenvalues are zeros of the zeta
function. Our inductive hypotheses cover a wider class of functions
than in [Den 93], and our treatment emphasizes another direction in
the study of regularized products and series. Factors of regularized
product type behave as if there were an operator, but no operator
may be available.

We also mention Gallagher’s attempt to unify a treatment of
Selberg’s trace formula with treatments of ordinary analytic num-
ber theory [Ga 84]. However, the conditions under which Gallagher
proves his results are very restrictive compared to ours, and, in par-
ticular, are too restrictive to take into account the inductive ladder
principle which we are following.
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