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Foreword

ETAPS 2004 was the seventh instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (FOSSACS, FASE, ESOP, CC, TACAS),
23 satellite workshops, 1 tutorial, and 7 invited lectures (not including those
that are specific to the satellite events).

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation analysis and
improvement. The languages, methodologies and tools that support these ac-
tivities are all well within its scope. Different blends of theory and practice are
represented, with an inclination towards theory with a practical motivation on
the one hand and soundly based practice on the other. Many of the issues invol-
ved in software design apply to systems in general, including hardware systems,
and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and independent proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “unify-
ing” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2004 was organized by the LSI Department of the Catalonia Tech-
nical University (UPC), in cooperation with:

European Association for Theoretical Computer Science (EATCS)
European Association for Programming Languages and Systems
(EAPLS)

European Association of Software Science and Technology (EASST)
ACM SIGACT, SIGSOFT and SIGPLAN

The organizing team comprised

Jordi Cortadella (Satellite Events), Nikos Mylonakis, Robert Nieuwenhuis,
Fernando Orejas (Chair), Edelmira Pasarella, Sonia Perez, Elvira Pino,
Albert Rubio

and had the assistance of TILESA OPC.
ETAPS 2004 received generous sponsorship from:



VI Foreword

UPC, Spanish Ministry of Science and Technology (MCYT), Catalan
Department for Universities, Research and Information Society (DURSI),
IBM, Intel.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Ratislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn Duesterwald
(IBM, Yorktown Heights), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Andy Gordon (Microsoft Re-
search, Cambridge), Roberto Gorrieri (Bologna), Nicolas Halbwachs
(Grenoble), Girel Hedin (Lund), Kurt Jensen (Aarhus), Paul Klint
(Amsterdam), Tiziana Margaria (Dortmund), Ugo Montanari (Pisa),
Hanne Riis Nielson (Copenhagen), Fernando Orejas (Barcelona), Mauro
Pezze (Milan), Andreas Podelski (Saarbriicken), Mooly Sagiv (Tel Aviv),
Don Sannella (Edinburgh), Vladimiro Sassone (Sussex), David Schmidt
(Kansas), Bernhard Steffen (Dortmund), Perdita Stevens (Edinburgh),
Andrzej Tarlecki (Warsaw), Igor Walukiewicz (Bordeaux), Michel
Wermelinger (Lisbon)

I would like to express my sincere gratitude to all of these people and orga-
nizations, the program committee chairs and PC members of the ETAPS confe-
rences, the organizers of the satellite events, the speakers themselves, and finally
Springer-Verlag for agreeing to publish the ETAPS proceedings. This year, the
number of submissions approached 600, making acceptance rates fall to 25%. I
congratulate the authors who made it into the final program! I hope that all the
other authors still found a way of participating in this exciting event and I hope
you will continue submitting.

In 2005, ETAPS will be organized by Don Sannella in Edinburgh. You will be
welcomed by another “local”: my successor as ETAPS Steering Committee Chair
— Perdita Stevens. My wish is that she will enjoy coordinating the next three
editions of ETAPS as much as I have. It is not an easy job, in spite of what
Don assured me when I succeeded him! But it is definitely a very rewarding
one. One cannot help but feel proud of seeing submission and participation
records being broken one year after the other, and that the technical program
reached the levels of quality that we have been witnessing. At the same time,
interacting with the organizers has been a particularly rich experience. Having
organized the very first edition of ETAPS in Lisbon in 1998, I knew what they
were going through, and I can tell you that each of them put his/her heart, soul,
and an incredible amount of effort into the organization. The result, as we all
know, was brilliant on all counts! Therefore, my last words are to thank Susanne
Graf (2002), Andrzej Tarlecki and Pawel Urzyczyn (2003), and Fernando Orejas
(2004) for the privilege of having worked with them.

Leicester, January 2004 José Luiz Fiadeiro
ETAPS Steering Committee Chairman



Preface

This volume contains the 28 papers presented at ESOP 2004, the 13th European
Symposium on Programming, which took place in Barcelona, Spain, March 29—
31, 2004. The ESOP series began in 1986 with the goal of bridging the gap
between theory and practice, and the conferences continue to be devoted to
explaining fundamental issues in the specification, analysis, and implementation
of programming languages and systems.

The volume begins with a summary of an invited contribution by Peter
O’Hearn, titled Resources, Concurrency and Local Reasoning, and continues with
the 27 papers selected by the Program Committee from 118 submissions.

Each submission was reviewed by at least three referees, and papers were
selected during a ten-day electronic discussion phase. I would like to sincerely
thank the members of the Program Committee, as well as their subreferees, for
their diligent work; Torben Amtoft, for helping me collect the papers for the
proceedings; and Tiziana Margaria, Bernhard Steffen, and their colleagues at
METAFrame, for the use of their conference management software.

David Schmidt
Program Chair
ESOP 2004
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Resources, Concurrency, and Local Reasoning
(Abstract)

Peter W. O’Hearn

Queen Mary, University of London

In the 1960s Dijkstra suggested that, in order to limit the complexity of po-
tential process interactions, concurrent programs should be designed so that
different processes behave independently, except at rare moments of synchro-
nization [3]. Then, in the 1970s Hoare and Brinch Hansen argued that debug-
ging and reasoning about concurrent programs could be considerably simplified
using compiler-enforceable syntactic constraints that preclude interference [4,1];
scope restrictions were described which had the effect that all process interac-
tion was mediated by a critical region or monitor. Based on such restrictions
Hoare described proof rules for shared-variable concurrency that were beauti-
fully modular [4]: one could reason locally about a process, and simple syntactic
checks ensured that no other process could tamper with its state in a way that
invalidated the local reasoning.

The major problem with Hoare and Brinch Hansen’s proposal is that its
scope-based approach to resource separation is too restrictive for many real-
istic programs. It does not apply to flexible but unstructured constructs such
as semaphores, and the syntactic checks it relies on are insufficient to rule out
interference in the presence of pointers and aliasing. Proof methods were subse-
quently developed which allow reasoning in the presence of interference [9,10,5],
and the reasoning that they support is much more powerful that that of [4], but
also much less modular.

There is thus a mismatch, between the intuitive basis of concurrent program-
ming with resources, where separation remains a vital design idea, and formal
techniques for reasoning about such programs, where methods based on separa-
tion are severely limited. The purpose of this work is to revisit these issues, using
the recent formalism of separation logic [11]. The general point is that by using a
logic of resources [7] rather than syntactic constraints we can overcome the lim-
itations of scope-based approaches, while retaining their modular character. We
describe a variation on the proof rules of Hoare for contitional critical regions,
using the “separating conjunction” connective to preclude pointer-based inter-
ference. With the modified rules we can at once handle many examples where
a linked data structure rather than, say, an array is used within a process, or
within a data abstraction that mediates interprocess interaction.

The rules have a further interesting effect when a data abstraction keeps
track of pointers as part of its data, rather than just as part of its implementa-
tion. The separating conjunction allows us to partition memory in a dynamically
reconfigurable way, extending the static partioning done by critical regions or
monitors when there is no heap. This enables us to handle a number of subtler

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 1-2, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



2 P.W. O’'Hearn

programs, where a pointer is transferred from one process to another, or between
a process and a monitor, and the ownership of the storage pointed to transfers
with it. Ownership transfer is common in systems programs. For example, inter-
action with a memory manager results in pieces of storage transferring between
the manager and its clients as allocation and deallocation operations are per-
formed [8]. Another typical example is efficient message passing, where a pointer
is transferred from one process to another in order to avoid copying large pieces
of data.

Dynamic partitioning turns out also to be the key to treating lower level,
unstructured constructs which do not use explicit critical regions. In particular,
our formalism supports a view of semaphores as ownership transformers, that
(logically) release and seize portions of storage in addition to their (operational)
behaviour as counting-based synchronizers. Local reasoning [6] is possible in such
a situation because dynamic, non scope-based, uses of semaphores to protect
resources are matched by the dynamic, non scope-based, approach to resource
separation provided by separation logic.

A special role in this work is played by “precise” assertions, which are ones
that unambiguously specify a portion of storage (an assertion is precise if, for any
given heap, there is at most one subheap that satisfies it). Precision is essential
for the soundness of the proof rules, which work by decomposing the state in a
system into that owned by various processes and resources (or monitors). Precise
assertions fulfill a similar role in recent work on information hiding [8], and are
used by Brookes in his semantic analysis of our concurrency proof rules [2].
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Relational Abstract Domains for the Detection
of Floating-Point Run-Time Errors*

Antoine Miné

DI-Ecole Normale Supérieure de Paris, France,
mine@di.ens.fr

Abstract. We present a new idea to adapt relational abstract domains
to the analysis of IEEE 754-compliant floating-point numbers in order to
statically detect, through Abstract Interpretation-based static analyses,
potential floating-point run-time exceptions such as overflows or invalid
operations. In order to take the non-linearity of rounding into account,
expressions are modeled as linear forms with interval coefficients. We
show how to extend already existing numerical abstract domains, such
as the octagon abstract domain, to efficiently abstract transfer functions
based on interval linear forms. We discuss specific fixpoint stabilization
techniques and give some experimental results.

1 Introduction

It is a well-established fact, since the failure of the Ariane 5 launcher in 1996,
that run-time errors in critical embedded software can cause great financial—
and human—TIosses. Nowadays, embedded software is becoming more and more
complex. One particular trend is to abandon fixed-point arithmetics in favor of
floating-point computations. Unfortunately, floating-point models are quite com-
plex and features such as rounding and special numbers (infinities, NaN, etc.)
are not always understood by programmers. This has already led to catastrophic
behaviors, such as the Patriot missile story told in [16].

Much work is concerned about the precision of the computations, that is
to say, characterizing the amount and cause of drift between a computation
on perfect reals and the corresponding floating-point implementation. Ours is
not. We seek to prove that an exceptional behavior (such as division by zero or
overflow) will not occur in any execution of the analyzed program. While this is
a simpler problem, our goal is to scale up to programs of hundreds of thousands
of lines with full data coverage and very few (even none) false alarms.

Our framework is that of Abstract Interpretation, a generic framework for
designing sound static analyses that already features many instances [6,7]. We
adapt existing relational numerical abstract domains (generally designed for
the analysis of integer arithmetics) to cope with floating-point arithmetics.
The need for such domains appeared during the successful design of a com-
missioned special-purpose prototype analyzer for a critical embedded avionics

* This work was partially supported by the ASTREE RNTL project.

D.A. Schmidt (Ed.): ESOP 2004, LNCS 2986, pp. 3-17, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



4 A. Miné

system. Interval analysis, used in a first prototype [3], proved too coarse because
error-freeness of the analyzed code depends on tests that are inherently poorly
abstracted in non-relational abstract domains. We also had to design special-
purpose widenings and narrowings to compensate for the pervasive rounding
errors, not only in the analyzed program, but also introduced by our eflicient
abstractions. These techniques were implemented in our second prototype whose
overall design was presented in [4]. The present paper focuses on improvements
and novel unpublished ideas; it is also more generic.

2 Related Work

Abstract Domains. A key component in Abstract-Interpretation-based anal-
yses is the abstract domain which is a computer-representable class of program
invariants together with some operators to manipulate them: transfer functions
for guards and assignments, a control-flow join operator, and fixpoint acceler-
ation operators (such as widenings V and narrowings A) aiming at the correct
and efficient analysis of loops. One of the simplest yet useful abstract domain is
the widespread interval domain [6]. Relational domains, which are more precise,
include Cousot and Halbwachs’s polyhedron domain [8] (corresponding to in-
variants of the form ) ¢;v; < ¢), Miné’s octagon domain [14] (f+v; £v; < ¢), and
Simon’s two variables per inequality domain [15] (aw; + fv; < ¢). Even though
the underlying algorithms for these relational domains allow them to abstract
sets of reals as well as sets of integers, their efficient implementation—in a maybe
approximate but sound way—using floating-point numbers remains a challenge.
Moreover, these relational domains do not support abstracting floating-point
expressions, but only expressions on perfect integers, rationals, or reals.

Floating-Point Analyses. Much work on floating-point is dedicated to the
analysis of the precision of the computations and the origins of the rounding
errors. The CESTAC method [17] is widely used, but also much debated as it is
based on a probabilistic model of error distribution and thus cannot give sound
answers. An interval-based Abstract Interpretation for error terms is proposed in
[1]. Some authors [11,13] go one step further by allowing error terms to be related
in relational, even non-linear, domains. Unfortunately, this extra precision does
not help when analyzing programs whose correctness also depends upon relations
between variables and not only error terms (such as programs with inequality
tests, as in Fig. 3).

Our Work. We first present our IEEE 754-based computation model (Sect. 3)
and recall the classical interval analysis adapted to floating-point numbers
(Sect. 4). We present, in Sect. 5, an abstraction of floating-point expressions
in terms of interval linear forms over the real field and use it to refine the inter-
val domain. Sect. 6 shows how some relational abstract domains can be efficiently
adapted to work on these linear forms. Sect. 7 presents adapted widening and
narrowing techniques. Finally, some experimental results are shown in Sect. 8.
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3 IEEE 754-Based Floating-Point Model

We present in this section the concrete floating-point arithmetics model that we
wish to analyze and which is based on the widespread IEEE 754-1985 [5] norm.

3.1 IEEE 754 Floating-Point Numbers

The binary representation of a IEEE 754 number is composed of three fields:

e a 1-bit sign s;

e an exponent e — bias, represented by a biased e-bit unsigned integer e;

e a fraction f = .b;...bp, represented by a p-bit unsigned integer.

The values e, bias, and p are format-specific. We will denote by F the set of
all available formats and by f = 32 the 32-bit single format (e = 8, bias = 127,
and p = 23). Floating-point numbers belong to one of the following categories:

e normalized numbers (—1)° x 227?138 x 1 f when 1 < e < 2° — 2;

e denormalized numbers (—1)* x 217P1as x (. f when e = 0 and f # 0;
e +0 or —0 (depending on s), when e =0 and f = 0;

e +00 or —oo (depending on s), when e =2° — 1 and f = 0;

e error codes (so-called NaN), when e =2° — 1 and f # 0.

For each format f € F we define in particular:

o mf; = 217Pias—P the smallest non-zero positive number;

o Mfy = (2 —27P)22°~bias=2 the Jargest non-infinity number.

The special values +00 and —oo may be generated as a result of operations
undefined on R (such as 1/+0), or when a result’s absolute value overflows Mf.
Other undefined operations (such as +0/+0) result in a NaN (that stands for
Not A Number). The sign of 0 serves only to distinguish between 1/4+0 = 400
and 1/—0 = —oo; +0 and —0 are indistinguishable in all other contexts (even
comparison).

Due to the limited number of digits, the result of a floating-point operation
needs to be rounded. IEEE 754 provides four rounding modes: towards 0, towards
+00, towards —oo, and to nearest. Depending on this mode, either the floating-
point number directly smaller or directly larger than the exact real result is
chosen (possibly +o0c or —oo). Rounding can build infinities from non-infinities
operands (this is called overflow), and it may return zero when the absolute
value of the result is too small (this is called underflow). Because of this rounding
phase, most algebraic properties of R, such as associativity and distributivity,
are lost. However, the opposite of a number is always exactly represented (unlike
what happens in two-complement integer arithmetics), and comparison operators
are also exact. See [10] for a description of the classical properties and pitfalls of
the floating-point arithmetics.

3.2 Custom Floating-Point Computation Model

We focus our analysis on the large class of programs that treat floating-point
arithmetics as a practical approximation to the mathematical reals R: roundings
and underflows are tolerated, but not overflows, divisions by zero or invalid
operations, which are considered run-time errors and halt the program. Our
goal is to detect such behaviors. In this context, +00, —oo, and NaN's can never



