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PREFACE

The goal of this series is to present in-depth treatment of topics of current
interest in computer vision and image processing. The terms computer
vision and image processing are used in their broad sense to include image
coding, enhancement, restoration and understanding, as well as the anal-
ysis of three-dimensional time-varying scenes. Computer vision and image
processing have important applications in diverse areas such as robotics,
industrial automation, medical diagnosis, and defense-related problems.
These applications draw concepts and techniques from many different
disciplines including multi-dimensional signal processing, pattern recog-
nition, and artificial intelligence. We aim to have each volume of this
series concentrate on a special topic or several closely related topics.
This inaugural volume of our series concentrates on signal and image
reconstruction from observations which are in one sense or another in-
complete. Chapters | and 2 treat the problem of extrapolation: Given part
of a signal, we aim to recover the whole. Chapters 3, 4, and S treat the

ix



X PREFACE

problem of phase retrieval: Given the magnitude of the Fourier transform
of a signal, we aim to recover the phase angle. Chapter 3 also discusses
the related problem of recovering the magnitude given the phase.

In reconstructing a signal from incomplete observations, it is of the
utmost importance to utilize a priori knowledge about the signal which
we may possess. The important question of what and how a priori knowl-
edge can be used is addressed in Chapter 6, This chapter also describes
a number of recent techniques in image restoration. In fact, this chapter
by Trussell, together with an earlier work of Frieden (‘‘Image Enhance-
ment and Restoration,’” in Picture Processing and Digital Filtering, ed.
by T. S. Huang, Springer-Verlag, 1979) should provide the readers with
an excellent overview of the area of image restoration.

The last chapter of this volume, Chapter 7, treats a problem of signal
reconstruction from multiple incomglete observations. Specifically, sev-
eral low-resolution images are combined to construct a higher-resolution
image. Included as part of the algorithm is a novel technique for registering
multiple images.

Although in this series we publish mainly invited papers, suitable un-
solicited contributions may also be published after careful reviewing. Po-
tential contributors are advised to contact the editor before submitting
their manuscripts.

Thomas S. Huang
Series Editor
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ABSTRACT

In this paper, the problem of bandlimited multidimensional signal extrap-
olation is studied.

We will first briefly review some important past work, and then new
contributions to this area will be presented. Four models under which the
extrapolation problem can be posed are introduced. These models are useful
for understanding the relationships among several extrapolation algorithms.
An important unification for iterative extrapolation algorithms and also for
noniterative procedures which are known in the engineering literature will
be shown. The technique we follow in our approach provides as a by-prod-
uct some new iterative algorithms which give faster extrapolations.

Also, the basic issues of discretization and noise are extensively dis-
cussed. Some new algorithms to cope with noise in the given signal and
approximation results concerning discretization of the known signal are
presented.

In addition, we will give abundant numerical simulation results by means
of which we hope to provide insight into the effectiveness and applicability
of the new techniques, as well as preliminary comparisons with other pro-
cedures.

1. INTRODUCTION

Band-limited signal extrapolation (or equivalently, support-limited spec-

trum extrapolation) is a key problem in signal reconstruction and resto-
ration.
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An important motivation in reconstruction is the missing-cone problem

in computer tomography as applied to nondestructive testing. As is well
known, a three-dimensional structure can be reconstructed if two-dimen-
sional x-ray images (projections) of it are given over all viewing angles.
However, in nondestructive testing, it often happens that it is physically
impossible to get images over certain angle ranges. In theory, support-
limited spectrum extrapolation could be used to supply the missing in-
formation.
" Another application is the following signal restoration problem. Let us
suppose that we are given a piece of a n-dimensional signal g(7), 1t € A
C R”. In addition, we assume that g is obtained from some other signal
f(x), x € Q, through a linear space variant system,

atf) = L K(1,x) f0) dx, 1€ R", (1)

where K is known. The goal is to recover the “‘real’” object f(x), x € Q,
from a finite set of samples of the ““observed’” signal g(z), when r € A.
This problem is very well known in the engineering literature [8] and has
been extensively studied in the mathematical literature [1].

A very important case is obtained from (1) when K(z,x) = k(t — x).
t,x € R”. In that case, g and f satisfy the following relationship:

g(w) = k(w)Jof(w), w e R”,

where " denotes the Fourier transform and Jof(x) = f(x) if x € Q, and
0 elsewhere. It is clear that

g(w) . 5

— = Jaf(w), for all w: k(w) # 0.

k(w)
Let us assume that k(w) # 0 for w € N, where N contains a nonvoid
open set of R”. Since Jof has compact support (if ) is compact) then
Jaf is analytic; so the knowledge of J4f(w), when w € N, will be enough
to determine Jof(w) for any other w € R”. In many applications,
Jaf(w), w € R” will describe by itself all the information that we need
from Jof. If this is not the case, then we should proceed to compute Jof
from Jof(w), w € R”. However, we have assumed, so far, that g(w) is
known exactly for all w € R”. This will not be the case if g(r) is observed
on the set A # R”, or on a finite subset of A only. This shows that if we
can improve our knowledge of g [i.e., to know g(7), when t & A] we will
obtain a better knowledge of ¢ [i.e., to compute g(w) more accurately].

In many cases, k(w) = 0if w & N, where N is assumed to be compact.

Therefore g¢(w) = 0, w & N, which assures that g will also be an analytic
function. This means that the set of values g(¢), t € A will determine g(1),
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t  A. This shows that the solution f to equation

2(2) = fnk(z — 2 fe) alx

can be approached by solving a continuation problem for two analytic
functions: given g(z), z € A, and Jof(w), w € N. It is important to note
that the continuation of Jof can be stated in the sense of Eq. (1) since

Taf(w) = [ 7™ () dx
and e~ ?™™" plays the role of K(w,x). This latter continuation problem
shows an example of the importance of considering space-variant kernels.
However, in this paper we will concern ourselves with the analytic con-
tinuation of band-limited functions only. That is to say when g is given
as in (1) with K(w,x) = e~ 2m"x,

One motivation for the continuation problem we give above is the res-
toration of f. However, there is another motivation: In many cases, we
are interested in obtaining knowledge of g(x), when x € A, and x is
‘‘close’ to A. Some examples of this situation are known in multidimen-
sional signal processing. Let us suppose we apply a filter to a given image.
The filter ideally performs over an infinite extent image. However, in
practice we are given only a piece of the image. When the filter is applied
to points close to or on the border of the real image, inaccuracies will
result if we assume some arbitrary numbers for the unknown values of
the image outside the border (e.g., the image is assumed to be periodic;
or a constant number is assumed for the unknown values). The filter would
improve its performance if we could fill in the unknown values of the
image with some extrapolated information. Thus, small amounts of ex-
trapolation (i.e., to extrapolate a small region beyond the boundary of A)
can be of great help.

We now state the band-limited signal extrapolation problem in a more
precise way. Let us suppose that g: R”— C (C denotes the set of complex
numbers) is a multidimensional signal which is of finite-energy; that is,

2
< =,
[ e P ar <=

In that case, g has a continuous Fourier transform g which satisfies

fR"

and therefore ¢ is also of finite-energy. Let us assume that g is band-

512 g — 2
g > dw fw|g|dx
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limited to some bounded set ) C R”. This means that ¢ satisfies
&w) = 0w Z Q.

It is well known that if g is a finite-energy band-limited function, then g
is an analytic function on C” [7].

Now, if we are given a piece of the function g, say g: A — C, where
A is a nonvoid open subset of R”, then we will be able to recover the
values g(x) for x € A because they are uniquely determined by {g(x),
x & A}. We can now state that the band-limited signal extrapolation prob-
lem is (under the conditions stated above):

given g(x), xEA, (2a)
find g(x), x&A. ) (2b)

To end this introductory section we will briefly outline the contents of
this paper. In Section 2, continuous band-limited extrapolation is consid-
ered. Some known algorithms for solving this problem are reviewed. In
Section 3, four basic models for extrapolation are presented. These
models are useful in understanding the relationship between the contin-
uous extrapolation problem and some discrete algorithms. In Section 4,
these discrete algorithms are considered, certain generalizations are pre-
sented, and the relationship between discrete and continuous algorithms
is established. We also include some numerical comparison among these
techniques. Section 5 presents a unification of iterative algorithms for
extrapolation. This is possible because of a general theory for solving
linear equation in Hilbert spaces. Section 6 concerns another main issue
in band-limited signal extrapolation: noise. Different approaches to this
problem, algorithms, and abundant numerical simulation results are dis-
cussed. In Section 7, two-step discrete procedures are also unified. We
will show that these techniques are special cases of certain procedures
designed for solving a more general problem. Finally, in Section 8, several
new directions for future research are outlined.

2. CONTINUOUS EXTRAPOLATION
2.1 Problem Statement

Let g: R” — C be a Q-band-limited finite-energy function. The contin-
uous-continuous band-limited signal extrapolation is, as was stated in Sec-
tion 1,

given g(x), XEA, (2a)
find g(x), x & A. (2b)
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We will always suppose that A C R” is a nonvoid open set. It is clear
that the solution to problem (2a)-(2b) is unique. This is simply because
g is an analytic function. In fact, since ¢ is also a finite energy function
and g(w) = 0, w & (, then

glx) = fn g(w)e 2™ dw. 3)

This formula ensures that g is analytic. In addition some bounds for g in
terms of the smoothness of its Fourier transform can be derived [7].

2.2 Algorithms for Continuous Extrapolation

Taking into account the analyticity of g, we may try to use expansions
in power series to calculate g(x) when x € A. However, these expansions
always involve the computation of high-order derivatives. The reason for
avoiding such an approach is twofold. First of all the derivatives of g are
not observable that is to say, we just know g(x), x € A. On the other
hand, estimations of the derivatives from the given data are always very
sensitive to noise (and the noisy case is precisely the situation we en-
counter in practice). "

One of the first attempts to solve the extrapolation problem was made
by Slepian and Pollack [27]. These authors used the Prolate Spheroidal
Wave Functions, which are the eigenvectors of the following integral
equation:

Ab(x) = j:'" sinco(x — 1)d(1) dt, XEA = [—a,ual,

where sincq denotes the function whose Fourier transform is the indicator
of [—Q,Q]. Letus call {(\;, d:): i = 0, [, . .. }the family of eigenfunctions
and their corresponding eigenvalues \;, such that

f_‘l d’i(.\')d)_,‘(.\') dx = 6,:,'7\,‘.

Then, the function g can be written as

- o

gx) = D ¢ b, X € R, (4)

J=0

where
1 (e .
G = _f g(x)di(x) dx. (5)
N J-a

It is observed that ¢; is computed by using g(x), x € A, only and therefore
the extrapolation (4) is obtained from g(x), x € A.
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This technique has been very helpful in understanding the extrapolation
problem. However, it has several drawbacks. In addition to the large
computational efforts required to calculate \; and ¢;, a major difficulty
arises in the computation of those eigenvectors corresponding to the
“‘smaller’” eigenvalues. The number of eigenvectors which are necessary
to get a good approximation in (3) depends on g and \;’s and cannot be
determined readily from g(x), x € [ —a,a]. Another disadvantage of this
approach is that the series (3) will not converge if g is contaminated with
noise; though only a finite number of terms in the summation (3) can be
tried as a ‘‘smoothing’’ technique, the determination of that number seems
to be a very difficult matter.

It is worth pointing out that the technique described above is for one-
dimensional band-limited signals. For the multidimensional case, attempts
to generalize the one-dimensional approach were made in [28]. However,
some limitations related to the form of the known region A seem una-
voidable.

Another well-known technique for solving the extrapolation problem
is that of [5] and [15]. This iterative procedure is known in the engineering
literature as the Papoulis—Gerchberg algorithm and is given by the fol-
lowing formula:

g =0
gn = sincg * (Jag + (I — Ja)gu—1), n=1, (6)

where J4 denotes truncation to the set A and * denotes convolution. In
Reference [15], it was shown that g, converges to g uniformly over the
real line R. The proof makes use of the Prolate Spheroidal Wave Func-
tions, and therefore it is valid only for one-dimensional signals.

It is easily seen [25] that the recursion (6) is equivalent to the following
formula:

g =0
En = Ln—1 + SinCn *JA(g - gn—l)’ n>1. (7)

Again, formula (6) or (7) is not convergent when g is corrupted with noise.
However, g, might provide a good approximation to the extrapolation
after a certain number of iterations. But unfortunately, no criterion for
stopping the recursion is known.

Cadzow proved the convergence of (7) by means of a rather different
argument which does not make use of the Prolates [3]. This approach can
be used to prove the convergence of (7) for multidimensional signals.
However, in Section 5 (see also [17]) we will show that this well-known
Papoulis—Gerchberg algorithm [(6) or (7)] is a special case of a quite gen-
eral iterative procedure given by Landweber in 1951 [14].



