Structured
ANS COBOL

Part 1: A course for novices using a subset of 1974
and 1285 ANS COBOL

Second edition

Mike Murach
Paul Noll

Structured
ANS COBOL

Part 1: A course for novices using a subset of 1974
and 1985 ANS COBOL

Second edition

Mike Murach
Paul Noll

Editorial tecam

Mike Murach
Paul Noll

Judy Tavlor
Pat Bridgemon

Production team

Steve Ehlers
[.ori Davis
Carl Kisling

Other products in our COBOL series

Instructor’s Guide for Structured ANS COBOL, Part 1
Minircel for Structured ANS COBOL, Part 1

Structured ANS COBOL, Part 2 by Mike Murach and Paul Noll
Instructor’s Guide for Structured ANS COBOL, Part 2
Minircel for Structured ANS COBOL, Part 2

How to Design and Develop COBOL Programs

by Paul Noll and Mike Murach
The COBOL Programmer’s Handbook by Paul Noll and Mike Murach
Instructor’s Guide for How to Design and Develop COBOL Programs
Minireel for How to Design and Develop COBOL Programs

Report Writer by Steve Eckols

CICS for the COBOL Programmer, Part 1 by Doug Lowe
CICS for the COBOL Programmer, Part 2 by Doug Lowe
Instructor’s Guide for CICS for the COBOL Programmer
Minireel for CICS for the COBOL Programmer

IMS for the COBOL Programmer, Part 1 by Steve Eckols

© 1986, Mike Murach & Associates, Inc.

All rights reserved.

Printed in the United States of America.
2019181716151413121110987654321
Library of Congress Catalog Card Number: 86-61654

ISBN: 0-911625-37-2

Structured

ANS COBOL

Mike Murach & Associates, Inc.
4697 West Jacquelyn Avenue
Fresno, California 93722

(209) 275-3335

Contents

Preface

Section 1

Chapter 1

Chapter 2

Section 2

Chapter 3

Chapter 4

Chapter 5

Required background

An introduction to computers, applications, and software

Topic 1 An introduction to computer hardware
Topic 2 An introduction to computer applications
Topic 3 An introduction to computer software

A student’s procedure for developing COBOL programs

A professional subset of COBOL for report preparation

An introduction to COBOL: The basic elements

Topic 1 The inventory-listing program

Topic 2 The Identification and Environment Divisions
Topic 3 The Data Division

Topic 4 The Procedure Division

Topic 5 Shop standards for COBOL programs

Topic 6 Compiler dependent code

Building on the COBOL basics

Topic 1 Data Division elements

Topic 2 Procedure Division elements
Topic 3 The investment-listing program
Topic 4 Compiler dependent code

COBOL elements the professionals use

Topic 1 Procedure Division elements
Topic 2 How to use the COPY library
Topic 3 How to use subprograms

Topic 4 The investment-listing program
Topic 5 Compiler dependent code

19
29

39

53

54

55
66
71
81
93
97

109

110
127
142
157

167

168
181
185
189
197

Chapter 6

Chapter 7

Section 3

Chapter 8

Chapter 9

Chapter 10

Section 4
Chapter 11

Chapter 12

Section 5

Chapter 13

Section 6

Appendix A
Appendix B
Appendix C
Appendix D

Index

Completing the professional subset

Topic 1 How to handle one-level tables using indexes
Topic 2 How to read records in indexed files
Topic 3 The investment-listing program

Topic 4 Compiler dependent code

The 1985 COBOL elements for structured programming

Program development techniques

Procedures and JCL for compiling and testing a program

Topic 1 Procedures for compiling and testing a program

Topic 2 JCL for compiling and testing a program on an IBM

mainframe under DOS/VSE
Topic 3 JCL for compiling and testing a program on an
IBM mainframe under OS/MVS

How to correct compilation diagnostics

How to test and debug a program

Topic 1 How to test a program
Topic 2 How to debug a program

Structured programming techniques
An introduction to structured programming

The structure and logic of report preparation programs

Related subjects

What else an effective COBOL programmer must know

Appendixes

A summary of the COBOL elements presented in this book
A model report preparation program

One chapter-by-chapter case study

Four more case studies

199

200
218
224
243

245

257

258

259
267

272

277

288

289
295

313

314

332

361

362

373

374

387

405

415

431

Preface

This book is a long overdue revision of our 1979 book: Structured ANS
COBOL, Part 1. The first edition was used in dozens of colleges and
junior colleges for classroom instruction, and in thousands of busi-
nesses for inhouse training. Nevertheless, it needed revision badly, due
to changes in COBOL, changes in data processing procedures, and
changes in training requirements.

What this book does

The main objective of this book is to teach you how to use a subset of
COBOL to develop structured programs that prepare reports. This
subset consists of COBOL elements that conform to both the 1974 and
the 1985 ANS standards (the standards published by the American
National Standards Institute). Although most businesses use 1974
COBOL today, the trend is obviously toward the use of 1985
COBOL. That’s why this book teaches you how to write programs for
either version of COBOL.

Because we feel it’s impossible to teach students how to code
structured programs without teaching them how to design programs,
this book gives extensive coverage to modern design techniques.
Specifically, it shows you how to design a program from the top down
using a structure chart, and it shows you how to plan the modules of a
program using pseudocode. In addition, this book teaches you how to
test a program from the top down. As a result, students who complete
this course should not only be able to code COBOL, they should be
able to develop programs using effective procedures for design, plan-
ning, and testing.

When compared with other introductory COBOL books, this
book presents less COBOL than the average book does, but it teaches
more about the structure and logic of programs that prepare reports.
This makes sense because most students have more trouble with struc-
ture and logic than they do with COBOL. As a result, this book is a
truer test of a student’s programming aptitude. If a student can study
this book and do the case studies in appendixes C and D with little
outside help, we're confident that he or she has the aptitude required
of a professional programmer in industry. On the other hand, if a stu-
dent has considerable difficulty with the case studies, COBOL pro-
gramming probably isn’t the right vocation for him or her. In general,

1

Preface

we feel that any student who successfully completes this course has the
qualifications of an entry-level programmer in industry.

Who this book is for

This book is a first course for anyone who wants to learn how to use
COBOL. Since it assumes that you have no data processing
experience, the first two chapters present the background you need for
COBOL programming. As a result, if you've had experience with
computers or programming, you may be able to skip portions of these
chapters.

Since this book presents standard COBOL as defined in the 1974
and 1985 standards, it teaches COBOL that can be used on any com-
puter system that supports COBOL. Although standard COBOL has
minor variations as you move from one computer system to another,
examples are given throughout the book that apply to microcom-
puters, minicomputers, and IBM mainframes. In general, any pro-
gram in this text will run on any system that supports COBOL with
only a couple of minor changes, and these changes are clearly
specified.

Since IBM mainframes are the most widely-used systems today,
all of the program examples in this text have been run on an IBM
mainframe. As a result, this book is particularly easy to use if you're
going to develop your programs on an IBM mainframe. As I said,
though, the variations required by other systems are also presented,
and they are trivial.

How to use this book

If you're reading this book as part of a course, your instructor should
guide you through it. On the other hand, if you're reading this book
on your own, you should realize that the chapters don’t have to be
read in sequence from chapter 1 through chapter 13. Instead, the
chapters are grouped into five sections as shown by the table in figure
P-1. As you can see, you can read section 3 any time after you com-
plete chapter 3 in section 2, and you can read section 4 any time after
you complete chapter 4 in section 2.

This type of organization, which we call modular organization,
gives you a number of options as you use this book. If, for example,
you want to learn all of the COBOL elements in section 2 before you
learn program development techniques and structured programming
techniques, that’s one option. Then, you just read the 13 chapters in
sequence. On the other hand, if you want to start the case study in
appendix C right after you complete chapter 3, you can study section
3 next to find out how to compile and test your case study program.
Similarly, you can study section 4 right after you complete chapter 4
to find out how to design typical report preparation programs.

Preface

Section Chapters Section title Prerequisites

1 1-2 Required background None

2 3-7 A professional subset Section 1
of COBOL

3 8-10 Program development Chapter 3
techniques

4 11-12 Structured programming Chapter 4
techniques

5 13 Related subjects Sections 1-4

Figure P-1 The basic organization of this book

To help you learn from this book, each topic or chapter is
followed by a terminology list and behavioral objectives. If you feel
you understand the terms in each terminology list, it’s a good indica-
tion that you’ve understood the content of the topic or chapter you've
just read. In other words, we don’t expect you to be able to define the
terms in a list, but you should recognize and understand them.
Similarly, if you feel that you can do what each objective requires, it’s
a good indication that you've learned what we wanted you to learn in
each topic or chapter.

To give you a chance to apply your learning, appendix C presents
a chapter-by-chapter case study. You can start working on this case
study when you complete chapter 3. Then, as you complete each new
chapter, the case study asks you to modify or enhance the program
that you developed for the last chapter. If you can code and test all
phases of this case study so they work correctly, we feel that this book
has accomplished its primary objective.

To help you apply your COBOL knowledge to more demanding
problems, appendix D presents four more case studies. You can start
on these any time after you complete chapter 4. These case studies
require you to develop four different types of report preparation pro-
grams, programs that require four different types of structure and
logic. If you can develop all of these programs, we feel that you have
the qualifications of an entry-level programmer in industry.

Related books

This book is only one book in our COBOL training series. Structured
ANS COBOL, Part 2 is an advanced book that starts where this book
ends. It teaches an entry-level programmer how to use advanced

Preface

COBOL elements to develop batch edit and update programs. Then,
Report Writer teaches you how to use the Report Writer module of
COBOL.

Perhaps the most important book we’ve ever done for COBOL
programmers is called How to Design and Develop COBOL Pro-
grams. It shows experienced COBOL programmers how to design,
code, and test programs that are easy to debug and maintain. And it
shows them how to increase their productivity, often by 200 percent
or more. As an accompanying reference, we offer the The COBOL
Programmer’s Handbook, which summarizes the procedures and
techniques presented in the text. It also presents seven model pro-
grams that you can use as guides for developing your own programs.
Because this text and handbook present techniques and examples that
will help you at any stage of your COBOL training, we recommend
that you get them and use them throughout your training and career.

Beyond this, we offer books that teach the COBOL programmer
how to use CICS and IMS or DL/I on IBM mainframes. We have
books on other subjects that the IBM COBOL programmer must
know, like VSAM, TSO, ICCF, and JCL. And we are publishing new
books each year. So please check our current catalog for titles that
may be of interest to you.

Instructor’s materials

If you're an instructor in a school or business, you will probably be
interested in the Instructor’s Guide that is available with this book. It
presents complete solutions for the case studies in appendixes C and
D. It gives you ideas and summary information for administering a
first course in COBOL. And it gives you masters for most of the figures
in the text so you can make overhead transparencies from them.

A minireel is also available with this course. It is a 1600-bpi tape
that contains files of test data, COPY members, and source programs.
In short, it provides all of the complete program examples used in this
book, as well as all of the files you’ll need for running the case study
solutions on your system.

Incidentally, we also offer instructor’s guides and minireels for
other courses in our COBOL series. These courses include Structured
ANS COBOL, Part 2 and How to Design and Develop COBOL Pro-
grams.

Reference manuals

Although this book represents a complete first course in COBOL, we
recommend that you have access to the basic COBOL reference
manuals for your system. On an IBM mainframe, two manuals are
usually enough for the verfion of COBOL that you're using: the
COBOL reference manual and the programmer’s guide for using
COBOL. On other systems, one manual is usually enough.

Preface

In general, you shouldn’t have to refer to these manuals as you do
the case studies. Occasionally, though, a problem may come up that is
specific to your system, not to standard COBOL. Then, you can
research the problem yourself in your system’s manuals. Also, as we
point out in chapter 13, it’s good to page through your system’s
COBOL manuals at some time during your training to find out what
features your version of COBOL provides.

About Paul Noll

Paul Noll originated the program development techniques we recom-
mend in this book when he was working as a training manager for
Pacific Telephone back in the mid-1970’s. In 1978, he became an
independent COBOL consultant. Since then, he has conducted
seminars in hundreds of companies throughout the United States and
Canada. His books have been used by thousands of programmers
around the world, and, based on a COBOL survey we did in 1984, we
believe that more than 3000 COBOL shops now use Paul’s methods
for program development. As far as we can tell, that means that Paul’s
methods are the most widely-used methods for structured program
development. We've used Paul’s methods in our own company since
1979, and we're convinced that they’re the most effective methods
currently available.

Paul is listed as a co-author of this book in the sense that he
developed the basic methods that are taught in this book. He also
reviewed the manuscript for this book as a double check on its
technical accuracy. As a result, we feel that he has made an important
contribution to the educational and technical quality of this book.

Conclusion

Paul and I believe that this book will help you learn COBOL better
than any competing book or course will. We're confident that you’ll
learn a usable subset of COBOL from this book and that you’ll learn it
with maximum efficiency. We're also confident that the case studies
will let you discover on your own whether a career in COBOL is right
for you.

If you have comments about this book, we welcome them. If you
check the last few pages of this book, you’ll find a postage-page com-
ment form. You'll also find a postage-paid order form in case you
want to order any of our products. We hope you find this book useful,
and thanks for being our customer.

Mike Murach
Fresno, California
May 20, 1986

Section 1

Required background

Before you can learn to develop programs in COBOL, you need some
data processing background. The two chapters in this section pre-
sent the minimum background that you need for this programming
course. Chapter 1 introduces you to computers, computer applica-
tions, and computer programs. Chapter 2 presents a procedure you
can use when you develop the COBOL programs required by this
course.

Of course, if you already have computing experience or pro-
gramming experience in another language, you may already know
much of the material in this section. If so, you can review the objec-
tives and terminology lists at the end of each chapter or topic to see
whether you need to study it.

Chapter 1

An introduction to
computers, applications, and software

This chapter consists of three topics that introduce you to computers
(hardware), computer applications, and computer programs (soft-
ware). If you've had no experience at all with computers or program-
ming, these topics provide the minimum background you need for
COBOL programming. On the other hand, if you're already familiar
with computers and programming, much of this chapter will be
review for you. In that case, you can review the terminology list and
objectives at the end of each topic to determine whether or not you
need to read the topic.

An introduction to computers, applications, and software

Topic 1 An introduction to computer hardware

Today, computer systems vary tremendously in size and price. On the
low end, you can buy a home computer for less than $2,000. On the
high end, a large IBM system may rent for over $1,000,000 per
month. Nevertheless, the same basic concepts apply to both types of
systems. In fact, you can run COBOL programs on both types of
systems. This topic introduces you to the hardware concepts that
apply to all business computers.

All business computer systems today consist of the four com-
ponents shown in figure 1-1: processor, visual display terminal, disk
device, and printer. A large system will have many more than four
components, as I'll explain in a moment, but it will have at least one
of each of the four components shown. In addition, a computer
system may have one or more tape drives and one or more card
readers, and it may have any number of special-purpose devices. In
simplest terms, you can classify the components of a computer system
into two groups: processors and input/output devices.

Processors

The center of a computer system is the processor. All the other devices
that make up the system are attached to it. Conversationally, it is the
“brain” of the system.

In simple terms, a processor consists of two main parts: the
central processing unit and main storage. The central processing unit
(or CPU) is a collection of circuits that execute program instructions
for calculation and data manipulation. Main storage (or main
memory) is the high-speed, general-purpose electronic storage that
contains both the data the CPU operates upon and the program
instructions it executes.

The smallest unit of main storage is called a byte. In general, a
byte of memory can store one character of data, such as the letter K,
the digit 3, or the symbol for dollars ($). Later on, you’ll learn that
numeric data can be stored in more than one form within a byte, so
two or more digits can be stored in a single byte. For now, though,
just assume that one byte of memory holds one letter, digit, or special
character.

To refer to the amount of main storage a system provides, the
symbol K has traditionally been used. Because the word kilo refers to
1,000, one K (or KB for kilobyte) refers to approximately 1,000 bytes
of storage. Thus, “a 128KB system” means a computer system with
approximately 128,000 storage positions in its main storage. I say
“approximately” because one K is actually 1,024 storage positions.

10

Chapter 1

Visual
display
terminal

Disk Processor Printer
device

Figure 1-1

The four components of any modern computer system

Today, however, large computers are sold with much larger
memories than can be expressed conveniently in K’s. For instance, a
small computer may have one megabyte of storage (expressed as
1MB). The term megabyte refers to approximately 1,000,000 bytes of
storage. More precisely, a megabyte is 1,024KB, or 1,024 times 1,024
bytes of storage.

Although a processor consists of millions of electronic com-
ponents, you really don’t need to know much more about one than
what I've just told you. As far as you're concerned, a processor is a
black box that stores programs and data and does what your programs
tell it to do.

Input/output devices

The second group of computer components is made up of input/out-
put devices, or just I/0 devices. Input devices send data to the pro-
cessor, and output devices receive data from it. Some devices can
perform both functions.

Because dozens of different devices are available for use within a
computer system, many with a variety of special features, I'm not
going to try to describe all of the possible I/O devices of a computer
system. Instead, I'm going to concentrate on the three I/O devices
shown in figure 1-1, because these are the ones you’ll be using most
frequently. In addition, I'll briefly mention tape drives and card
readers: tape drives because you're likely to use one someday, and
card readers because of their historical significance.

Disk devices Disk devices provide permanent storage for the
programs and data of a system. They are both input and output
devices because data and programs can be written on them or read
from them. Because disk devices allow direct and rapid access to large
quantities of data, they are a key component of all modern computer

An introduction to computers, applications, and software

systems. In contrast to the permanent storage of a disk device, pro-
cessor memory is only used to store programs while they are being
executed or to store data while it is being processed.

The most common type of disk device is the disk drive, a unit that
reads and writes data on a disk pack. A disk pack, illustrated concep-
tually in figure 1-2, is a stack of metal platters that are coated with a
metal oxide. Data is recorded on one or both sides of each of the
platters. A disk pack can be removable or it can be fixed in a perma-
nent, sealed assembly inside the drive.

On each recording surface of a disk pack, data is stored in concen-
tric circles called tracks. This is also illustrated conceptually in figure
1-2. Although the number of tracks per recording surface varies by
device type, the surface illustrated in figure 1-2 has 200 tracks,
numbered from 000 to 199.

The data stored on a track is read by the disk drive’s access
mechanism, which is an assembly that has one read/write head for
each recording surface as shown in figure 1-2. As you can see, the
access mechanism is positioned over the same track on all recording
surfaces at the same time. As a result, all of these tracks can be
operated upon, one after another, without the access mechanism
having to move. Because the access mechanism can be positioned on
any track of a device in a fraction of a second, any record on a disk
drive can be accessed in an instant.

To specify the capacity of a disk drive, megabytes are normally
used. For instance, a disk drive on a personal computer may have a
capacity of 10MB, while a disk drive on a minicomputer may have a
capacity of 75MB. On the largest computer systems, though,
gigabytes, or GB’s, are used to record disk capacities. One GB is equal
to 1,000MB, so a GB is approximately one billion bytes of storage. On
some systems, a single disk drive can store more than one GB of data.

For the most part, you can think of a disk device as a black box,
just as you can a processor. In other words, you don’t need to know
how many disks it consists of, how many tracks are on each disk, and
so on. All you need to know is that your program can write data on the
disk device, and it can access and read any of the data on the disk
device at a high rate of speed.

Terminals On a modern computer system, visual display ter-
minals, or just terminals, are used to enter data into the system and to
display data stored in the system. As a result, terminals are both input
and output devices. Each terminal consists of two parts: a keyboard,
which is similar to that of a typewriter, and a display screen, which is
somewhat similar to the screen of a TV. Since you've probably used a
terminal at one time or another, I won’t dwell on one’s operational
characteristics. If you haven’t used one before, you probably will as
part of this course.

You should know, however, that terminals are also known by
many other names. They can be called VDT’s, using the acronymn for

11

