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CHAPTER 14

Introduction to Tests of
Hypotheses

14.1 Testing Theory and Modelling

The purpose of the methods described in the first volume is to specify
and estimate, on the basis of the data, a model of which the validity
is not questioned. On the contrary, in the theory of hypothesis testing,
which is the general topic of the second volume the validity of the model
is now challenged.

For instance, one may wonder whether the specified model is not too
“large,” i.e., whether a submodel defined by a subset of the family P
of possible probability distributions is not preferable. This is the basis
of significance tests. Conversely, one may wonder whether the specified
model is not too restrictive, i.e., whether the true distribution that has
generated the observations actually belongs to P. In the latter case, one
frequently talks about specification tests. As a matter of fact, we shall
not make a distinction between these two kinds of testing situations,
for the approach that is generally considered in specification testing is
to nest P in a larger family and to examine whether P is an acceptable
restriction of this larger family. Hence the second problem reduces to the
first problem. There exists, however, another approach to the problem of
specification testing. This will be discussed in Chapter 22 when studying
nonnested hypotheses tests.

Over the last fifty years, the statistical methods of the theory of
hypothesis testing have considerably developed under the impulse of
statisticians such as J. Neyman, E. Lehman and A. Wald. As for the
theory of statistics in general, this development has its source in the
increasing role of probabilistic modelling as a scientific tool. Another
reason, however, which may be more fundamental and specific to the
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theory of hypothesis testing, is the progressive disappearence of the idea
that a model can be validated with certainty on the basis of the data.
Such an idea, which was frequently held during the nineteen century, was
gradually forsaken especially at the beginning of the twentieth century
when physicists started to question the theory of classical mechanics con-
sidered up to then as the definitive theory. The relative value of a model
in a collection of competing models then proved to be a valuable concept.
As a natural consequence, the theory of hypothesis testing, whose main
purpose is to arbitrate among models, received an increasing interest.

14.2 Hypotheses

A testing problem is defined by a statistical model (},P) and by a
partitioning of the family P into two subfamilies Py and P, = “Py.
These two subfamilies define respectively two hypotheses about the true
distribution Py generating the observations, namely

Ho:PoEP()

and
H1 : PO € P].

It is frequently convenient to identify Hy with Py and H; with Ps.
Although the two hypotheses Hp and H; play a symmetric role in this
section, they are given hereafter two different names: Hp is called the
null hypothesis while H; is called the alternative hypothesis. The union
of Hy and H, defines the hypothesis H : Py € P = Py U P1, which is
called the general or maintained hypothesis.

Definition 14.1: A hypothesis is called simple if it contains a unique
probability distribution. It is called composite otherwise.

In a parametric model (Y, {Fs,8 € ©}) the hypotheses Hy and H;
are defined, in general, by two subsets 6y and ©; = Qg of ©. When
the model is identified, such a definition of the null and alternative hy-
potheses is identical to that based on a partition of P into Py and P.
This is because the mapping that associates Py to 8 is a one-to-one and
onto mapping, i.e., a bijective mapping from © to P. When the model is
not identified, however, a difficulty arises. Specifically, there may exist
values for the parameter 8y € 6y and 6; € &, leading to the same prob-
ability distribution, i.e., such that Py, = Py, . In this case the subsets
Po = {Ps,0 € 6y} and P, = {Fy,6 € ©1} are no longer disjoint.
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Definition 14.2: A testing problem defined by O¢ and B, = °Bq is
identified if Py, is different from Py, for every 6y € ©¢ and 6, € ©;.

It is obvious that a model is identified if and only if every testing
problem is identified. As Example 14.4 illustrates, however, some testing
problems can be identified even though the model is not identified.

14.3 Examples

Example 14.1: A machine produces steel balls whose diameters are
independently and identically distributed as N(f,03). It is assumed
that the accuracy o2 of the machine is a characteristic known to the
investigator and that the mean diameter € of the produced steel balls is
a parameter that can be chosen. One observes n diameters Y7,...,Y,
and one wishes to test whether the tuning of the machine corresponds
to the posted value 6.

In this example the statistical model is
(IR", {(N(G,ag))@’",é? € JR+}) .

The null hypothesis of good tuning is Hy: 8 = 6y and the alternative
hypothesis is Hy: 6 5 6y. The null hypothesis is simple while the alter-
native hypothesis is composite.

Example 14.2: It is assumed that the production Q; of a given com-
modity at time £, t = 1,...,T, can be modelled by the Cobb-Douglas
production function

log Q; = a + blog N; + clog Ky + uy,

where Ny denotes the quantity of labor input and K; denotes the quantity
of capital input. It is assumed that the random disturbances u;, t =
1,...,T, are independently and identically distributed as N(0,0?).

The model is parametric. If logQy, £t = 1,...,T, are viewed as the
observations, the model is

T
(RT, {@N(a—i—blogNt + clog Ky, 02), (a,b,c,0%) € R x B+}) .

t=1

One may want to test the hypothesis Hy of constant returns, i.e.,
the property that multiplying labor input and capital input by a same
factor leads to multiplying production by this factor. Such a hypothesis
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is identical to the condition that the Cobb—Douglas production function
is homogenous of degree one. In terms of the parameters, this translates
into the condition b+ ¢ = 1. It is clear that the two hypotheses Hy and
H, are composite. For instance, Hy is given by

90={(a,b,c,02) e R XB+,b+c=1}.

One may also want to question the hypothesis of independence among
the u;'s. A method for dealing with such a “specification” testing sit-
uation is to nest the preceding model into a larger model where the
disturbances u;’s satisfy the first-order autoregressive process

up = pug—1 +e1, ol <1

and the &,’s are independently and identically distributed as N(0,02).
The null hypothesis of independence of the u,’s is then characterized by
the condition p = 0.

Example 14.3: A consumption survey provides observations on health
expenditures and incomes of n households, (C;, R;), ¢ = 1,...,n. It is
assumed that the pairs (C;, R;) are independently and identically dis-
tributed with unknown density f(c;,r;) with respect to the Lebesgue
measure A} on R™. The statistical model is defined by the family

P = {Hf(ci,’"i) - AL, f arbitrary on JR"'2} .
i=1

Suppose that one wishes to test whether health expenditures are in-
dependent of incomes. The null hypothesis corresponds to the subfamily

Po = {Hg(ci)h(ri) -AZ., g and h arbitrary on 1R+} .
=1

The model is nonparametric. The null and alternative hypotheses are
composite.

Example 14.4: At time ¢t = 1,...,T, the quantity exchanged @ and
the price p; of an agricultural product are determined by the demand
equation

Qi = apy + Bry_1 +yz-1 + 6 + uy,

and the supply equation

Q¢ = ap; + b+,
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where x;_; and z;_, are some variables treated as nonstochastie, u; and
vy are zero-mean random errors uncorrelated contemporaneously and
over time. The variable p; denotes the producers’ expectation at time
t — 1 of price at time £. In addition, it is assumed that this expectation
is a function of past exogenous variables and is given by

Pt = $1%4—1 + daze—1 + 3.
Using this expression in the supply equation, one obtains

{ Q: = aps + Bri_1 + Y21 + 6 + us,
Q¢ = [1%e—1 + Baze—1 + B3 + 14,

where
/31 = a¢1 3
:32 = (1:¢2 )
Bz = b+ags.

The parameters a, b, ¢1, ¢2, and ¢3 are not first-order identified although
the parameters (31, (2, and 33 are.

One wishes to test whether price expectations are “rational,” i.e.,
whether they coincide with the optimal predictions p; = E;_1p,, where
E;_1p; is the conditional expectation of p; given the variables known
at time t — 1. Taking first the conditional expectation of the demand
and supply equations and then, the difference between the resulting
equations, one obtains

§—b
Ti1 + 21+ .
o a—« a—«

* IB
p; = Ey_1py = P

Thus the null hypothesis of “rational” expectations can be written as

§—0b
H01¢1=afa, ¢2=a:y—a’ ¢3=a_a-

The hypothesis Hy is not identified since ¢1, ¢2, and ¢3 are not identified.
The null hypothesis Hy, however, implies

$1 B

H): —==

gy T ¥’

ie. 5 g
Hr. 22

0 B2 Y



