Pascal

Programming Structures

an intreduction ke
sustematic programaing)

George W.Cherry



Pascal Programming Structures

an Intreducticn
o systematic preogramming

George W.Cherry

&)

Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia



Library of Congress Cataloging in Publication Data

Cherry, George W.
Pascal programming structures.

Includes index.

1. Pascal (Computer program language) I. Title.
QAT76.T73.P2C46 001.64'24 80-10107
ISBN 0-8359-5463-3

© 1980 by

Reston Publishing Company
A Prentice-Hall Company
Reston, Virginia

All rights reserved. No part of this book
may be reproduced in any way, or by any
means, without permission in writing from

the publisher.

0 9 8 7 6 5 4 3 2

Printed in the United States of America



Pascal Programming Structures

Qn latrodvuction
e systematic programming



THIS BOOK IS DEDICATED TO

ALYCE F. CHERRY



Preface

Beginning students in programming have several kinds of difficulties
in writing well constructed and correct programs:

1. Getting started
2. Finishing
3. Writing statements free of syntactical errors

A helpful textbook on programming assists the student in these three
areas. This book was written in accordance with this idea. The book
helps the student to get started by illustrating the top-down strategy
of design. It helps the student to complete his design by illustrating
step-wise refinement. And it helps the student to avoid syntactical
errors by careful descriptions and illustrations of Pascal syntax. I
believe the result will be that students using this book will write
error-free and pleasing programs earlier in their courses.

The book emphasizes good reading and writing skills. One of my hopes
is that the book's emphasis on clear style will infect the reader with
an enthusiam for writing and reading well written computer programs. A
bibliography tells the student where he can find many more well written
Pascal programs.

I have chosen Pascal for this textbook because of its outstanding
balance of data structuring facilities, control structures, and size.
Pascal facilitates the objectives of an introductory programming course
better than any other language I know. Pascal is a practical as well as
educationally significant language. Efficient compilers for Pascal are
available for virtually every contemporary computer. The present trickle
of ads for programmers who know Pascal should grow steadily during the
1980s. Students who learn to program in Pascal according to the
principles expounded in this book should write better BASIC, FORTRAN,
and COBOL programs when their jobs require these older languages.

The first two chapters of the book are different in style and intent
from the rest of the book. The purpose of these chapters is to introduce
the rank beginner to simple program statements and simple, complete
computer programs. It's beneficial for students to see and comprehend a
handful of whole programs before getting into details. This is by no
means a new approach; but it's sound and sadly underused.

xi



Preface xii

The student who already knows another programming language and wants
to "pick up" Pascal could skip Chapter 1 completely and read Chapter 2
rapidly. This student may find the rest of book somewhat verbose; but
it's my experience that students don't save time when an author leaves
them half guessing at some syntactical point or semantic possibility.

The book starts at a level suitable for the rank novice; but it
covers ground fairly rapidly as the student's knowledge grows. The book
describes the complete Pascal language. It concludes with records
(Chapter 8), dynamically created data structures (Chapter 9), files
(Chapter 10), and sets (Chapter 11). (However, files in the context of
the standard input and output operations are also covered in Chapter 4.)
We leave sets until last because, while elegant, they are more peculiar
to Pascal, and not essential.

I see the book's application in three settings:

1. A textbook for a one-semester course entitled something like
"Introduction to Computer Programming." Such a course would probably
assign the first seven chapters and thus cover all the simple data
types, all the control structures, subprograms, and arrays. The order of
the chapters on arrays (Chapter 6) and subprograms (Chapter 7) can be
switched (by deferring the array examples in the chapter on
subprograms). At any rate, we introduce the concept and some simple
illustrations of subprograms long before the formal chapter on
subprograms.

This would be a very respectable introductory course. It would give
the students possession of a language approximately equal in power to
BASIC and FORTRAN. The instructor might, of course, elect to omit the
sections on recursive subprograms, procedures and functions as
parameters, and any other section he deemed too advanced.

2. A second course in programming entitled "Data Structures" or
"Information Structures." In this course the instructor would assign
Chapters 6-11 and the students could use the earlier chapters for
reference. Pascal is an exquisite language for teaching and learning
data structures. For this course the instructor would no doubt want to
augment this book with his own notes or one of the excellent books
covering data structures (Professor Wirth's own "Algorithms + Data
Structures = Programs" or Horowitz and Sahni's "Fundamentals of Data
Structures," for example).

3. A self-study text for the computer professional or hobbyist who
wants to learn Pascal for professional or cultural reasons.

I have taken very seriously the careful explication of Pascal's
syntax. It's gratuitous frustration for a student to wrestle with a
malfunctioning program because his textbook failed to elucidate some
syntactical banana peel it's easy to slip on. I know of one student who
spent three hours trying to debug a program because his textbook did not
explain Pascal's peculiar behavior while reading numbers and looking for
eof = true. Where there are ambiguities or disputes about a particular
definition, I have appealed to the proposed BSI/ISO/ANSI* standard as
well as Pascal's de facto standard, Jensen and Wirth, 1974.



Preface xiii

All the major and many of the minor programming examples have been
compiled and run on a computer.

The book requires very little mathematical knowledge of the student
beyond elementary algebra.

I have taken illustrative problems from the fields of elementary
chemistry, psychiatry, psychology, information theory, word processing,
typesetting, and others.

Finally, for those who are interested in such things, I should like
to say a little about the production of this book. The author prepared
the text on his personal microcomputer and "set the type" himself with
the same microcomputer, using a popular serial character printer. (The
only type the author did not personally set was the Bauhaus Medium
display type used for the title page and chapter titles.) This kind of
composition system dissolves some of the technologically obsolete
boundaries between author and copy editor, author and typesetter, author
and proofreader. Therefore, I must bear fuller responsibility than
usual, for better or for worse, for errors occurring in this book.

I am particularly pleased to acknowledge the expertness of Ellen
Cherry, my wife and very fortunately my production editor at Reston
Publishing Company. Ellen skillfully guided me through the many shoals
of bookmaking.

*# BSI: British Standards Institution
ISO: International Standards Organization
ANSI: American National Standards Institute

George W. Cherry
Reston, Virginia



Contents

Preface
1. Introduction to Programming, 1

A Computer Program Is Like a Recipe..., U4

Need for Care and Precision in Writing Computer Programs, 8
Names (Identifiers) in Pascal, 9

Exercises, 13

2. The General Structure of Pascal Programs, 14

Some Sample Pascal Programs, 14

The Skeleton of a Pascal Program, 29

The Layout and Typestyle of Pascal Programs, 32
Exercises, 38

3. Declaring and Operating on Simple (Unstructured) Variables, 40

Variables in Computing, 41

Declaring Variables, 43

Boolean: The True/False Data Type, 44

Char: The Printable Characters Data Type, 50
User-Defined Scalar Data Type, 56

Integer: The Whole Numbers Data Type, 59
Subrange Data Type, 64

Real: The Decimal Numbers Data Type, 66
Exercises, T1

4. Introduction to Input and Output, 73

Inputting Numerical Data: The Read Procedure, 75
Inputting Numerical Data: The Readln Procedure, 80
Inputting Character Data: Read and Readln, 82
Inputting Mixed Numerical and Character Data, 84
Outputting Data: Write and Writeln, 86

Exercises, 90

vii



Contents viii
5. Structuring Program Actions, 92

begin...end: Concatenating Program Actions, 93

for...do: Repetition for a Known Number of Times, 94
while...do: Repetition While a Condition Remains True, 99
repeat...until: Repetition Until a Condition Becomes True, 102
if...then...else: Choosing Between Two Alternatives, 104
if...else if...else if: Choosing Among Many Alternatives, 108
case...end: Selection of One from Many, 109

goto, 111

Exercises, 114

6. Structured Data Type 1: The array, 116

Introduction to Indexed Variables, 116

Syntax of the Array, 121

Searching Arrays, 124

Sorting Arrays, 129

Multidimensional Arrays, 131

Strings and Other Packed Data Types, 136
Applications: Text Editing and Text Formatting, 140
Exercises, 146

7. Subprograms: functions and procedures, 149

The Necessity of Hierarchical Organization, 149
functions: Subprograms that Compute a Single Value, 151
Recursive Functions, 160

Extending Pascal with New Subprograms, 163

procedures: Programs Within Programs, 164

Compare: Hierarchical Structure in a Nontrivial Program, 168
Value and Variable Parameters, 172

Gaining Flexibility through Parameters, 175

Recursive Procedures, 179

Subprogram Directives, 183

Block Structure and Scope of Identifiers, 184

Some Tips on Writing Subprograms, 189

Exercises, 189

8. Structured Data Type 2: The record, 192

The with Statement, 198
Variant Records, 201
A Program to Create a Line Index, 207

Exercises, 216



Contents
9. Dynamically Allocated Data Structures, 218

The Need for Dynamic Variables, 218

Pointer Variables and Referenced Variables, 221

Implementing Stacks with Arrays Versus
Implementing Stacks with Dynamic Variables, 227

Implementing Queues with Dynamic Variables, 232

Binary Search Trees, 238

Storage for Dynamic Variables, 246

Exercises, 250

10. Structured Data Type 3: The file, 253
Why Have a Sequential File Data Type?, 253
Creating (Writing) a File, 255
Inspecting (Reading) a File, 258
Copying and Modifying Files, 259
Merging and Sorting Files, 264
Exercises, 273

11. Structured Data Type 4: The set, 275

Constructing Sets, 276

Testing for Set Equality, Set Inclusion, and Set Membership, 277
An Example of Lexical Analysis, 278

Performing Arithmetic on Sets, 280

Subprograms for Processing Sets, 281

Limitations of Pascal Sets, 283

Exercises, 284

Appendix A. Backus-Naur Description of Pascal, 285

Appendix B. ASCII and EBCDIC Character Codes, 296

Appendix C. How to Trace Programs, 298

Appendix D. IBM 9-Unit System for Character Widths, 302

Appendix E. Summary of Data Types and Denotations of Variables, 303
Bibliography, 307

Pascal User's Group All Purpose Coupon, 309
Joining Pascal User's Group?, 310

Index, 311

1%



I. Introduction to Programming

A computer program is a sequence of instructions to a computer
processor to perform useful actions on significant objects. The
significant objects are often--but by no means always--numbers. For
example, there are extremely useful computer programs for helping
authors, secretaries, editors, and typesetters to create, prepare, edit,
and typeset English text. In these cases the objects are letters,
numbers, punctuation marks, words, sentences, and paragraphs; and the
useful actions are insert, delete, move, justify (meaning to make the
margins line up, as in the case of both margins of this book), paginate,
and print. This book, for example, was composed, edited, and printed
with the aid of such a computer program. There are several excellent
word-processing and page-formatting programs written in the Pascal
programming language.

The significant objects can also be lines, curves, characters, and
other elements of figures; examples of the useful actions are position,
scale-up (or scale-down), rotate, extend, change color, move, erase,
connect, and print. Objects and actions like these are used in computer
programs for computer-aided drafting, drawing, and design. An example of
the output of such a program is Figure 1.1. A relatively short and
simple Pascal program generated this intricate figure, called a
Sierpinski curve.

Our final example of significant objects is records that are arranged
in lists. The useful actions in this case are manipulations on the data
in the records; this is called "list processing." An important example
would be an insurance company's list of records of its policy holders.
Useful actions would be to print the names of all policy holders who had
more than three claims in the last five years} to print reminder notices
to all policy holders whose premiums are 30 days overdue; to send
information about life insurance to all policy holders who have fire
insurance with the company and no life insurance; or to send information
about automobile insurance to all the policy holders who have life
insurance and no automobile insurance. Unlike the programming languages
Fortran and BASIC, which are somewhat deficient in features that
facilitate list processing, Pascal has language features allowing the
full generality of list processing.



INTRODUCTION TO PROGRAMMING 2

T T T TR
RS TR R0 §%0
FLr Lo KTl

2%
2
X K5

BET2x
oD s
X ¥ WA
43 O 4 o > %
KDL CERL
e o
’ “g { ‘\\"‘\"‘*"I
P | K R
ool (epe:
L
B d 1S 4 B 4 B d
KEAN KEAN KEAXN KEAX

Figure 1.1 Sierpinski Curve

We call the significant objects on which the computer performs useful
actions, data. We have seen that the family of data contains more types
of objects than just numbers. (It also includes more than one type of
number, as you will learn.) The first ingredient of a well written
program is a thorough and careful description of the types of data on
which your program acts. There are two kinds of data in a computer
program: data whose values cannot change during the execution of the
program, called, for obvious reasons, constants (such as the number of
ounces in a quart, 32); and data whose values can change, called
variables. Variables are, of course, where most of the program's action
is. The value of a variable can change; but in the Pascal language a
variable's data type cannot change. If a programmer defines a variable
to hold a string of characters, he must not later treat that variable as
though it held a number representing a component of the national debt.
Therefore, every variable in a Pascal program has a distinct and
unchanging data type associated with it; and this data type determines
both the values the variable can assume and the operations the program
may perform upon it. An immediate advantage of this data type stability
is that we may give every variable a meaningful name like Employee,
HoursWorked, HourlyRate, CitationsInStock, OptionalEquipment,
SalesToDate, and so on; and these meaningful names are more likely to
stay meaningful during the existence of the variable.



Introduction to Programming 3

A computer programming language is a formal means of describing the
significant objects (the data) and the useful actions that the computer
processor should perform on the data. Since computers don't "think" the
way we do, there is always some compromise when we human beings try to
communicate with a computer. We prefer to speak in an abstract and
problem-oriented natural language. We would like to say something to the
computer like "Keep a record of the hours and hourly rate, overtime, and
bonuses of each employee and print out their paychecks each month," or
"Keep an inventory of all the new automobiles we have in stock and tell
me right now how many air-conditioned, manual transmission, two-door
Citations we have in stock," or "Keep a record of the sales of all
salesman and print out their names and sales-to-date in descending
order."

Unless you believe the movies in which space travelers carry on
colloqial dialogues with talking computers, you probably already know
there's a vast gulf between what we would like to say to the computer
and what the computer can understand. The computer's objects, after all,
are only strings of binary digits, or "bits," like 11010001, 00100101,
11100111, and so on, not the consequential objects (like Employee,
HoursWorked, and HourlyRate) with which we associate names, meanings,
and data types. And the computer's native actions are primitive and
elementary, not related in any way we can readily see to the
problem-solving actions we've been discussing. Furthermore, the computer
hardware requires all its nondescript data and its primitive
instructions to be expressed as strings of bits. If we didn't already
know that computers are useful, we might despair that they ever could
be. How do we bridge this vast gulf between the human problem and the
computer's reliable and fast but simplistic mechanisms? One aid in
bridging the gap is an appropriate programming language. Ideally, a
programming language should make it easy for us to express our problem
solutions; but the language should also be easy to translate into those
machine language strings of ones and zeros.

Fortunately, since the installation of the first useful digital
computers in the 1950s, the compromise in communication has been
continually shifting in our--the human being's--favor. The reason is the
successful effort of computer scientists to develop high-level,
problem-oriented languages and efficient computer programs to translate
these languages into the strings of ones and zeros required by computer
processors. Consequently, we don't have to worry about the ones and the
zeros, the machine's internal language, and other esoteric matters like
that. Someone must, of course, and you may want to learn about that kind
of programming also--it's called machine-level or machine language
programming. But this is a book about programming in a high-level,
problem-oriented language. The computing community often uses one of the
following abbreviations for this kind of programming: HLL (High-Level
Language) or POL (Problem-Oriented Language) programming.

A computer program called the compiler (and sometimes the
interpreter) makes the translation of your HLL program into the
computer's internal language. Thus, the computer helps solve the



Introduction to Programming 4

communication problem which it created. You use the computer to
translate your language into its language. Therefore, when you approach
the computer for the first time with your first Pascal program, you will
be meeting the compiler and asking it to compile (translate) your
program. A good compiler will do more than translate your program for
you. It will also rigorously check your program's adherence to Pascal's
data typing and syntax rules and make whatever checks it can of your
program's logical consistency. A good compiler is the HLL programmer's
best friend. Compilers make possible programming enterprises that would
probably be quite impossible without them. We will make frequent
reference to the compiler throughout this book. Here's a definition of
compiler from the 1977 edition of Webster's New Collegiate Dictionary:
"a computer program that translates instructions in a higher-level
symbolic language (as COBOL [Fortran, BASIC, PL/I, or Pascall) into
machine language."

A COMPUTER PROGRAM IS LIKE A RECIPE...

The recipe for a cake, the instructions for knitting a sweater, or
the directions for building a birdhouse or assembling an electronic kit
have a logical format. Consider the following recipe:

BAKED ZITI (Serves 4)

Ingredients:

1 (8-ounce) package ziti

2 cups Italian tomato sauce

1 cup shredded mozzarella cheese

Actions:

1. Cook ziti according to
spaghetti recipe on page 343.

2. Prepare Italian tomato sauce
according to recipe on page 186.
3. Combine ziti, tomato sauce,
and 1/2 cup shredded cheese in
2-quart casserole.

4, Sprinkle remainder of cheese
on top of casserole.

5. Heat casserole uncovered on
full power for ten minutes or
until cheese is melted and sauce
is bubbly.

This recipe is a program for preparing a pasta casserole; it has many



Introduction to Programming 5

parallels with a computer program. Like the recipe, a Pascal program
must start with a heading. Like the recipe a Pascal program must follow
the heading with a list of its "ingredients," the objects upon which the
program operates.

Notice that for the sake of compactness and readability the recipe
refers to subrecipes (or procedures) on other pages of the cook book:
the procedures for cooking the ziti and preparing the Italian tomato
sauce. Indeed, the procedure (for preparing the tomato sauce) on page
186 of the cookbook is actually longer than this recipe for Baked Ziti.
The single instruction in action 2 in the main recipe stands for the
many declarations and actions defined in the Italian tomato sauce
procedure on page 186. Many well organized cook books declare a set of
useful procedures, functions, and subrecipes which the author invokes
again and again. For example, procedures for drawing a bird and stuffing
and trussing a bird may appear at the beginning of the poultry section;
later in the cookbook, recipes for wild duck, turkey, and partridge
invoke these predefined procedures. The author will give gravy and sauce
subrecipes and then invoke them in main recipes by short-hand phrases
such as "White Sauce III, page 285." Pascal offers two forms of
subprograms (procedures and functions) which are analogous to these
subrecipes. They serve the same purpose: they make the main program more
compact, readable, and comprehensible.

A particularly useful kind of instruction in a recipe is one that
makes the actions of the cook contingent on the condition of the item
under preparation. Statement 5 above contains such an instruction: the
recipe instructs the cook to heat the casserole "until cheese is melted
and sauce is bubbly." There are many such contingent actions in cooking
recipes; they ensure repetition of an action (heating, in our example)
until a condition is achieved (melted cheese and bubbly sauce). Other
examples from a popular cookbook are: "simmer celery until tender";
"beat the batter until it is smooth"; "whip the egg whites until they
stand in peaks." Pascal has two kinds of instructions for controlling
contingent program repetitions (see Chapter 5 in Contents). Borrowing
the Pascal keywords they are:

while "the batter is lumpy” do
"beat the batter.”

and
repeat
"simmer the celery"

until "the celery is tender."

The above is pidgin Pascal. Here's some real Pascal:

until X < 1



Introduction to Programming 6

What does it do? First of all, every trade and profession has special
jargon and symbols. Computing (and cookery!) is no exception. There's
one of these special symbols in the above statement: ":="; it's called
the assignment operator. The assignment operator enforces a two-stage
process:

1. Evaluate the expression on the right-hand side; i.e., find
the value of X divided by 2.

2. Assign this value to the variable whose name appears on the
left-hand side.

How do you say "X := X / 2"? Programmers usually simply say "X equals X
over two." Of course, this is not an accurate translation of the
assignment operator; and it's sheer arithmetical nonsense unless X is
zero. But you're invited to say it the easy way. Pascal will always try
to remind you that the assignment operator is not the same as "=" or
"equals"; that's precisely why Pascal uses ":=" for the assignment
operator. If you wanted to be strictly correct (and sound rather
pedantic and stiff!), you might say "replace the old value of X with the
old value of X divided by two."

Let's go back to our original question: what does this repeat-until
statement do? It repeatedly halves the value contained in the variable X
until that value is less than one. If the initial value in X is 10, then
the sequence of values generated by the repeat...until loop is: 10.0,
5.0, 2.5, 1.25, 0.625; and the final value assigned to X by this process
is 0.625.

A simpler kind of repetition in a recipe is noncontingent: the action
is repeated for a fixed number of times or for a given duration.
Examples are: "stir mixture ten times"; "blend for six minutes"; "rinse
in clear, cold water three times." Pascal has a control structure
analogous to this. Here's some pidgin Pascal translating two of the
above instructions.

for J := 1 to 10 do
"stir the mixture";

for J := 1 to 3 do
"rinse in cold, clear water";

And here's some real Pascal.

for J := 1 to 4 do
writeln('This is a test.');

This Pascal instruction prints (writes a line) "This is a test." four
times on the output device (printer or video console).

The nature of a cooking or programming problem may be such that,
depending on the condition of the object, the cook or the processor
should or should not take some action. From a recipe book we have: "pare



