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Preface

Lattices are geometric objects that can be pictorially described as the
set of intersection points of an infinite, regular n-dimensional grid. De-
spite their apparent simplicity, lattices hide a rich combinatorial struc-
ture, which has attracted the attention of great mathematicians over the
last two centuries. Not surprisingly, lattices have found numerous ap-
plications in mathematics and computer science, ranging from number
theory and Diophantine approximation, to combinatorial optimization
and cryptography.

The study of lattices, specifically from a computational point of view,
was marked by two major breakthroughs: the development of the LLL
lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early
80’s, and Ajtai’s discovery of a connection between the worst-case and
average-case hardness of certain lattice problems in the late 90’s.

The LLL algorithm, despite the relatively poor quality of the solution
it gives in the worst case, allowed to devise polynomial time solutions
to many classical problems in computer science. These include, solving
integer programs in a fixed number of variables, factoring polynomials
over the rationals, breaking knapsack based cryptosystems, and finding
solutions to many other Diophantine and cryptanalysis problems.

Ajtai’s discovery suggested a completely different way to use lattices in
cryptography. Instead of using algorithmic solutions to computationally
tractable lattice approximation problems to break cryptosystems, Ajtai’s
work shows how to use the existence of computationally intractable-to-
approximate lattice problems to build cryptosystems which are 1MPOSSi-
ble to break. Namely, design cryptographic functions that are provably
as hard to break as it is to solve a computationally hard lattice problem.

Whereas in complexity theory we say that a problem is hard if it is
hard for the worst case instance, in cryptography a problem is deemed
hard only if it is hard in the average case (i.e., for all but a negligible
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fraction of the instances). The novelty in Ajtai’s result, is that he shows
how to build a cryptographic function which is as hard to break on
the average (e.g., over the random choices of the function instance) as
it is to solve the worst case instance of a certain lattice problem. This
achievement is unique to lattice theory at this time, and points to lattices
as an ideal source of hardness for cryptographic purposes.

These new constructive applications of lattices, are deeply rooted in
complexity theory, and were followed by a sharp increase in the study
of lattices from a computational complexity point of view. This led to
the resolution of several long standing open problems in the area. Most
notably, the NP-hardness of the shortest vector problem in its exact and
approximate versions. We present a self contained exposition of this
latter result as well as other results on the computational complexity of
lattice problems.

We did not attempt to cover everything known about lattices, as this
would have filled several volumes. Rather, we selected a few represen-
tative topics, based on our personal taste and research experience. Re-
grettably, a topic which we neglect is duality and transference theorems.
With this notable exception, we believe that most of the current ideas
relevant to lattice based cryptography appear within in some form or
another.

Many research questions regarding lattices and their cryptographic
usage remain open. We hope that this book will help make lattice based
cryptography more accessible to a wider audience, and ultimately yield
further progress in this exciting research area.

Acknowledgments. Part of the material presented in this book is
based on joint work of the authors with Shai Halevi, Oded Goldreich,
Muli Safra and Jean-Pierre Seifert. Many other people have indirectly
contributed to this book, either through their work, or through many
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tion Miklés Ajtai, Ravi Kannan, Amit Sahai, Claus Schnorr, Madhu
Sudan and Salil Vadhan. We would like to thank all our coauthors and
colleagues that have made this book possible.

The first author would like to thank also the National Science Foun-
dation and Chris and Warren Hellman for partially supporting this work
under NSF Career Award CCR-0093029 and a 2001-02 Hellman Fellow-
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Chapter 1

BASICS

This book is about algorithmic problems on point lattices, and their
computational complexity. In this chapter we give some background
about lattices and complexity theory.

1. Lattices

Let R™ be the m-dimensional Euclidean space. A lattice in R™ is the
set

n
[:(bl,...,bn)= {inbi:xiEZ} (1.1)

i=1
of all integral combinations of n linearly independent vectors by,...,b,
in R™ (m > n). The integers n and m are called the rank and dimension
of the lattice, respectively. The sequence of vectors by, ..., b, is called

a lattice basis and it is conveniently represented as a matrix

B = [by,...,b,] € R™*" (1.2)

having the basis vectors as columns. Using matrix notation, (1.1) can
be rewritten in a more compact form as

L(B) = {Bx:x € Z"} (1.3)

where Bx is the usual matrix-vector multiplication.

Graphically, a lattice can be described as the set of intersection points
of an infinite, regular (but not necessarily orthogonal) n-dimensional
grid. A 2-dimensional example is shown in Figure 1.1. There, the basis

vectors are
1 1
w=[4] me[ 4] (L4
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Figure 1.1. A lattice in R?

and they generate all the intersection points of the grid when combined
with integer coefficients. The same lattice has many different bases. For
example, vectors

b’1=b1+b2={‘{f], b’2=2b1+b2=[§’] (1.5)

are also a basis for lattice £(by,by). The grid generated by 1, bh is
shown in Figure 1.2. Notice that although the two grids are different, the
set of intersection points is exactly the same, i.e., {by, by} and {bf,bs}
are two different bases for the same lattice £(by,bz) = £(bf, b)).
Throughout the book, we use the convention that lattice points are
always represented as column vectors. Wherever vectors are more con-
veniently written as rows, we use transpose notation. For example,
the definition of vector by, by in (1.4) can equivalently be rewritten as
b; = [1,2]7,by = [1,-1]T, where AT denotes the transpose of matrix

A simple example of n-dimensional lattice is given by the set Z™ of
all vectors with integral coordinates. A possible basis is given by the
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Figure 1.2. A different basis

standard unit vectors

n

ei=[0,..,0,1,0,.., 0.

i

In matrix notation Z™ = L(I) where I € Z"*" is the n-dimensional
identity matrix, i.e., the n X n square matrix with 1’s on the diagonal
and 0’s everywhere else.

When n = m, i.e., the number of basis vectors equals the number of
coordinates, we say that £(B) is full rank or full dimensional. Equiv-
alently, lattice £(B) C R™ is full rank if and only if the linear span of
the basis vectors

span(B) = {Bx:x € R"} (1.6)

equals the entire space R™. The difference between (1.3) and (1.6) is
that while in (1.6) one can use arbitrary real coefficients to combine the
basis vectors, in (1.3) only integer coefficients are allowed. It is easy
to see that span(B) does not depend on the particular basis B, i.e.,
if B and B’ generate the same lattice then span(B) = span(B'). So,
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for any lattice A = £(B), we can define the linear span of the lattice
span(A), without reference to any specific basis. Notice that B is a
basis of span(B) as a vector space. In particular, the rank of lattice
L(B) equals the dimension of span(B) as a vector space over R and it
is a lattice invariant, i.e., it does not depend on the choice of the basis.

Clearly, any set of n linearly independent lattice vectors B’ € L(B) is
a basis for span(B) as a vector space. However, B’ is not necessarily a
lattice basis for £(B). See Figure 1.3 for a 2-dimensional example. The
picture shows the lattice £(b1, b2) generated by basis vectors (1.4) and
the grid associated to lattice vectors

2 0
bll=b1+b2=|:1], b'2=b1—-b2=|:3:|. (1.7)

Vectors b} and b} are linearly independent. Therefore, they are a basis
for the plane R? = span(by,by) as a vector space. However, they are
not a basis for £L(by, by) because lattice point b; cannot be expressed as
an integer linear combination of b} and b%. There is a simple geometric
characterization for linearly independent lattice vectors that generate
the whole lattice. For any n linearly independent lattice vectors B’ =
[b,...,bl] (with b} € £L(B) C R™ for all i = 1,...,n) define the half
open parallelepiped ‘

PB')={B'x:0 < z; <1}. (1.8)

Then, B’ is a basis for lattice £(B) if and only if P(B’) does not contain
any lattice vector other than the origin. Figures 1.1, 1.2 and 1.3 illustrate
the two cases. The lattice in Figures 1.2 and 1.3 is the same as the
one in Figure 1.1. In Figure 1.2, the (half open) parallelepiped P(B’)
does not contain any lattice point other than the origin, and therefore
L(B') = L(B). In Figure 1.3, parallelepiped P(B’) contains lattice point
by. Therefore £L(B’) # £(B) and B’ is not a basis for £(B).

Notice that since B’ is a set of linearly independent vectors, £(B’) is a
lattice and B’ is a basis for £(B’). Clearly, £L(B') C £(B), i.e., any point
from lattice £(B') belongs also to lattice £L(B). When £(B') C L(B),
we say that £(B’') is a sublattice of L(B). If L(B') = £(B) we say that
bases B and B’ are equivalent. If L(B') C L(B), but £(B') # L(B),
then bases B and B’ are not equivalent, and £(B’) is a proper sublattice
of L(B).

Equivalent bases (i.e., bases that generate the same lattice) can be
algebraically characterized as follows. Two bases B,B’ € R™*" are
equivalent if and only if there exists a unimodular matrix U € Z™*" (i.e.,
an integral matrix with determinant det(U) = +1) such that B’ = BU.
The simple proof is left to the reader as an exercise.
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Figure 1.3. The sublattice generated by b; + by and b; — b,

When studying lattices from a computational point of view, it is cus-
tomary to assume that the basis vectors (and therefore any lattice vector)
have all rational coordinates. It is easy to see that rational lattices can
be converted to integer lattices (i.e., sublattices of Z™) by multiplying
all coordinates by an appropriate integer scaling factor. So, without loss
of generality, in the rest of this book we concentrate on integer lattices,
and, unless explicitly stated otherwise, we always assume that lattices
are represented by a basis, i.e., a matrix with integer coordinates such
that the columns are linearly independent.

Lattices can also be characterized without reference to any basis. A
lattice can be defined as a discrete nonempty subset A of R™ which is
closed under subtraction, i.e., if x € A and y € A, then also x — y € A.
Here “discrete” means that there exists a positive real A > 0 such that
the distance between any two lattice vectors is at least A\. A typical
example is the set A = {x € Z™ Ax = 0} of integer solutions of a
system of homogeneous linear equations. Notice that A always contains
the origin 0 = x —x, it is closed under negation (i.e., if x € A then —x =
0 —x € A), and addition (i.e., if x,y € A then x +y = x — (—y) € A).
In other words, A is a discrete additive subgroup of R™.
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1.1 Determinant

The determinant of a lattice A = L(B), denoted det(A), is the n-
dimensional volume of the fundamental parallelepiped P(B) spanned by
the basis vectors. (See shaded areas in Figures 1.1 and 1.2.) The deter-
minant is a lattice invariant, i.e., it does not depend on the particular
basis used to compute it. This immediately follows from the character-
ization of equivalent bases as matrices B’ = BU related by a unimod-
ular transformation U. Geometrically, this corresponds to the intuition
that the (n-dimensional) volume of the fundamental parallelepiped P(B)
equals the inverse of the density of the lattice points in span(B). As an
example consider the bases in Figures 1.1 and 1.2. The areas of the fun-
damental regions (i.e., the shaded parallelepipeds in the pictures) are
exactly the same because the two bases generate the same lattice. How-
ever, the shaded parallelepiped in Figure 1.3 has a different area (namely,
twice as much as the original lattice) because vectors (1.7) only generate
a sublattice.

A possible way to compute the determinant is given by the usual
Gram-Schmidt orthogonalization process. For any sequence of vectors
by,..., by, define the corresponding Gram-Schmidt orthogonalized vec-
tors b},..., by, by

i—1
b} = bi— Y pi;b; (1.9a)

i=1

(bi, b})
Bij = ey (1.9b)

(b7, b}
where (x,y) = Y v, z;y; is the inner product in R™. For every i,
b} is the component of b; orthogonal to by,...,b;—;. In particular,
span(by,...,b;) = span(bj,...,b}) and vectors b} are pairwise orthog-

onal, i.e., (b}, b;) = 0 for all 7 # j. The determinant of the lattice equals
the product of the lengths of the orthogonalized vectors

det(£(B)) = [ ] I}l (1.10)
=1

where ||x|| = 1/3,; 22 is the usual Euclidean length. We remark that the

definition of the orthogonalized vectors b; depends on the order of the
original basis vectors. Given basis matrix B = [by, ..., by], we denote by
B* the matrix whose columns are the orthogonalized vectors [b}, ..., b}].
Clearly, B* is a basis of span(B) as a vector space. However, B* is not
usually a lattice basis for £(B). In particular, not every lattice has a
basis consisting of mutually orthogonal vectors.
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Notice that if the b;’s are rational vectors (i.e., vectors with rational
coordinates), then also the orthogonalized vectors b} are rationals. If
lattice £(B) is full dimensional (i.e. m = n), then B is a nonsingular
square matrix and det(£(B)) equals the absolute value of the deter-
minant of the basis matrix det(B). For integer lattices, B is a square
integer matrix, and the lattice determinant det(£(B)) = det(B) is an
integer. In general, the reader can easily verify that det(£(B)) equals
the square root of the determinant of the Gram matrix BTB, i.e., the
n X n matrix whose (4, j)th entry is the inner product (b;, b;):

det(L(B)) = 1/det(BTB). (1.11)

This gives an alternative way to compute the determinant of a lattice
(other than computing the Gram-Schmidt orthogonalized vectors), and
shows that if B is an integer matrix, then the determinant of £(B) is
always the square root of a positive integer, even if det(£(B)) is not
necessarily an integer when the lattice is not full rank.

1.2 Successive minima

Let Bn(0,r) = {x € R™ : x| < r} be the m-dimensional open
ball of radius r centered in 0. When the dimension m is clear from the
context, we omit the subscript m and simply write B(0,r). Fundamental
constants associated to any rank n lattice A are its successive minima
A1,- -+ An. The ith minimum \;(A) is the radius of the smallest sphere
centered in the origin containing 7 linearly independent lattice vectors

Ai(A) = inf {r: dim(span(A N B(0,r))) > i} . (1.12)

Successive minima can be defined with respect to any norm. A norm
is a positive definite, homogeneous function that satisfies the triangle
inequality, i.e., a function || - ||: R* — R such that

= ||x|| > 0 with equality only if x = 0
" lox|| = [ef - [|x]]
w |lx 4yl < x| + llyll

for all x,y € R" and @ € R. An important family of norm functions is
given by the £, norms. For any p > 1, the £, norm of a vector x € R” is

n 1/p
Ixll, = (Z xf) : (1.13)
=1



