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PREFACE »

Among the myriad and ever-increasing subjects which’ an ‘engineering
student is required to master, few are more important than the techniques
for analyzing linear systems. The study of linear systems is important

 for several reasons. First, a great majority of engineering situations are
linear, at least within specified ranges. Second, exact solutions of the
behavior of linear systems can usually be found by standard techniques.
Third, the techniques remain the same irrespective of whether the prob-
- lem at hand is one on elegtrical circuits, mechanical vibration, heat, con-
duction, motion of elastic beams, or diffusion of liquids. Except for a
very few special cases, there are no exact methods for analyzing nonlinear
systems. Practical ways of solving nonlinear problems involve graphical
or experimental approaches. Approximations are often necessary, and
each situation usually requires special handling.” Two essential steps are
involved in the analysis of a physical system, namely, the formulation of
mathematical equations that describe the system in accordance with phys-
ical laws, and the solution of these equations subject to appropriaté initial A
or boundary conditions. This book attempts to furnish a thorough exposi-
tion of the techniques that are important in executing both of these steps
for linear systems. :
In the formulation of the equations that describe a physical system,’
emphasis is oriented toward electrical circuits. To deal with systems other
than electrical, a chapter (Chapter 4) on analogous systems is included
which treats in detail methods for drawing electrical circuits analogous to
linear mechanical and electromecharical systems. This approach is-ad-
vantageous because electrical engineers have developed a set of convenient
symbols for circuit elements, so that a complex system can be set down
with conventional symbols in the form of a circuit diagram from which
the behavior of the system can be analyzed.  Once the circuit diagram of
the analogous electrical system is determined, it is possible to visualize
and often predict important system behaviors by inspection. Moreover,
electrical circuit-theory teehniques, such as the use of the impedance con-
cept and the various network theorems, can be applied in the actual
analysis of the system. : g
One of the primary purposes of this hook is to introduce the Laplace
transform method of solving linear differential and integrodifferential
equations. Fourier series and Fourier integral are first reviewed, and a
discussion of Fourier transforms leads logically and directly to Laplace
transforms. This method of introducing Laplace transformation is pref-
vii



viii _ PREFACE
erable to the unsatisfying approach of pulling the defining formulas out
of thin air and applying them in a mechanical manner.

Although the Laplace transform method of solving linear differential
and integrodifferential equations is, in ‘many circumstances, simpler and
more convenient: to use than classical methods, I do not wish to minimize
the importance of understandmg the.classical methods. I do not feel that
the student should be led to believe that the Laplace transform method
is superior to all other methods under all ciréumstances. First of all, there
are definite limitations to the applicability of transform methods.. For
example, the Laplace transform method cannot conveniently be used to
solve linear differential equations with variable coefficients even of the
first order, while the classical approach can yield solutions to many such
equations of practical importance. Second, when the known conditions
of a problem are specified at values of the independent variable other than
zero, the Laplace transform method becomes cumbersome to use even
when the physical situation can be described by differential equations
with constant coefficients. -On the other hand, the spplication of classical
methods is not modified by the way in which the known conditions are
specified. Third, the separation of the general solution to a differential
equation into a complementary function and a particular integral in the
classical approach helps the understanding of the geneéral nature of system
response. It is not difficult to cite situations for which the complementary-
function and particular-integral parts of the solutions can be written from
the equations by inspection, while all steps in the formal procedure will
have to be carried out in the transform method. Systems with ¢onstant or
sinusoidal excitations are typical examples of such situations. A separate
chapter (Chapter 2) is devoted to the discussion of classical methods for

.solving linear differential equations.

‘In applying the Laplace transform method, over-reliance on tables of
transforms is discouraged. I strongly feel that a few fundamental trans-
form pairs together with several important theorems should be remem-
bered. It is realized that one cannot remember everything, but a good
engineer or seientist should not be hopelessly ineffective without his tables
or handbooks. The memory work involved is really very little. The tables
of transforms in Appendix B are for reference purposes only, and students
should not have to refer to them when they are learnmg the subject.

The complex Laplace inversion mtegral is derived in Chapter 6 from
the Fourier integral, but evaluation of inverse Laplace transforms by
contour integration in the complex plane is not attempted. This book
does not include a chapter on the theory of functions of a complex variable.
I am convinced that a superficial knowledge of the theory of functions of
a complex variable serves no useful purpose in a book like this one. The
inclusion of some introductory material on function theory may make the
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tevel of the book "appear more aavanced, but it would be a rather un-
necessury and unrewarding digression. Hxperience has indicated that in
order for a student to be able to evaluate inverse transforms of irrational
functions (functions with branch points) a much better background on
the theory of functions of & complex variable than could be offered in one
or two short chapters is necessary. The use of function theory and Cauchy’s
residue theorem in connection with functions having pole singularities
results in little advantage since Heaviside’s expansion theorem can be

~applied with ease in these cases. I have chosen to discuss the inverse
Laplace transforms of irrational functions in a direct manner (Sections
8-6 and 11-4) and carry the development far enough so that typical im-
portant systems with distributed parameters can be analyzed completely.
A rigorous discussion of the intricacies of the inversion integral from the
point of view of function theory is left to more advanced treatises.

The book begins with a chapter which explains in detail the characteris-
tics of linear systems from both a physical and a mathematical viewpoint.
General properties of linear differential equations are discussed. Chapter
2 presents the essentials of classical methods for solving linear differential
equations.

Electrical cn'cuxt theory -and methods of analyzing lumped-element
electrical systems are carefully presented in Chapter 3, which should be
.well within the grasp of students in all branches of engineering, physics,
and applied mathematics. Chapter 4 deals with analogous systems and
discusses in detail methods for drawing electrical circuits a.nalogous to
linear mechanical and electromechanical systems.

Chapter 5 reviews Fourier series and Fourier integral. A discussion of
-Fourier transforms leads to Laplace transforms, which dre introduced in
Chapter 6.

Chapter 7 illustrates the applications of Laplace transformation. Im-
pulse response, step response, convolution and superposition integrals,
and other system concepts are discussed in Chapter 8. Inverse Laplace
transforms of some irrational functions are also derived there.

Chapter 9 treats systems with feedback where both block-diagram
and signal flow graph representations are used. System stability require-
ments are developed in detail.

Chapter 10 deals with sampled-data systems. Z transformation is in-
troduced and stability requirements for sampled-data systems are ex-
amined. Also included are the method of solving difference equations by -
Z transformation and a modified Z transformation for determining the
response between sampling instants.

Chapter 11 discusses systems with distributed parameters. Two ap-
pendixes, one on numerical solution of algebraic equations and the other
containing transform tables; complete the book.
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This book may be used by either advanced undergraduates or beginning
graduate students. A few -of the possible combinations of chapters that
may serve various groups of students are suggested below:

1. Electrical engineering students with no prior knowledge of differen-

tial equations: Chapters 1, 2, 3, 5, 6, 7, 8.
2. Electrical engineering students who have had a course in ordinary
differential equations: Chapters 1, 3, 4, 5, 6, 7, 8.
3. Electrical engineering graduate students: Chapters 1, 4, 6, 7, 8, 9,
10, 1.
4. Graduate students in mechanical engineering, physics, or applied
mathematics: Chapters 1, 3,4, 6,7, 8,9, 11. :
Various other selections of material are of course possible, depending upon
the nature of the course in the curriculum. The book provides enough
material to prepare a student to go on to more advanced work in network
theory, control systems, and vibrations. ‘

This book was originally to be a joint project with Professor Norman
Balabanian. Due to other commitments Professor Balabanian had to
withdraw from this venture. I wish to thank him for a number of ideas
which he contributed in the planning stage. To Professors William H.
Huggins and William A. Lynch I wish to express my sincere appreciation
for their many constructive suggestions. Thanks are also due Professor
Richard A. Johnson, who reviewed parts of the manuscript and suggested
improvements. The assistance of Mr. Mark Ma, who carefully read the
galley proofs, is much appreciated. My special thanks go to my wife Enid,
whose patience and understanding made the tedious book-writing task
much easier to endure.

March. 1959 D. K. C,
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CHAPTER 1
CHARACTERISTICS OF A LINEAR SYSTEM

1-1 Introduction. The study of linear systems is important for two
reasons: (1) a great majority of engineering situations. are linear, at
least within specified ranges; and (2) éxact solutions of the behavmr of
linear systems can usually be found by standard techniques. Except for
a very few special types, there are no standard methods for analyzing non-
linear systems. The practical ways of solving nonlinear problems involve
graphical or experimental approaches. Approximations are often neces-
sary, and each situation usually requires special handling. The present
state of the art is such that there is neither a standard technique which
can be used to solve nonlinear problems exactly, nor is there any assurance
that a good solution can be obtained at all for a given nonlinear system.
Hence, we.are indeed fortunate that a great majority of engineering
problems are linear and can be solved. However, we must realize that‘not

“all physical systems are linear without restrictions.

We are all familiar with the Obm’s law that governs the relation be-
tween the voltage across and the current through a resistor. It is a lsnear
relationship because the voltage across a resistor is (linearly) proportional
to the current through it. But even for this simple situation, the linear
relationship does not apply under all conditions, For instance, as the
current in a resistor is greatly increased, the value of its resistance will
increase due to heat developed in the resistor, the amount of increase
being dependent upon the magnitude of the current; and it is no longer
correct to say that the voltage across the resistor bears a linear relation-
ship to the current through it. The same can be said about Hooke’s law,

ich states that the stress is (linearly) proportional to the strain of a
sprmg But this linear relationship breaks down when the stress on the
spring is too great. When the stress exceeds the elastic limit of the material
of which the spring is made, stress and strain are no longer linearly related. <
The actual relationship is much more complicated than the Hooke's law
situation. We are therefore forewarned that restrictions always exist for
linear physical situations; saturation, breakdown, or material changes
will ultimately set in and destroy linearity. Under ordinary circumstances,
however, physical conditions in many engineering problems stay well
within the restrictions, and the linear relationship holds.

Obm’s law and Hooke’s law describe only special linear systems. There
exist systems that are much more compiicated and so cannot be con-
veniently described by simple voltage-current or stress-strain relationships.

1



2 CHARACTERISTICS OF'A LINEAR SYSTEM [crap. 1

Other more universal criteria are necessary to establish that a system is
linear. Linear systems are characterized by certain definite properties
which make them simpler to describe physically and easier to solve mathe-
matically. In the following sections, we shall examine the characteristics
of a linear system from both a physigal and a mathematical viewpoint.

1-2 Linear system from a physical viewpoint. ‘An engineer’s interest in
a physical situation is very frequently the determination of the response
of a system to a given excitation. Both the excitation and the response
may be any physically measurable quantity, depending upon the particu-
lar problem. Figure 1-1 depicts such a situation. Suppose that an excita-
tion function ey(f), which varies with time in a specified manner, produces
a response function wy(f), and that a second excitation function e,(t)
produces a-second response funection wa(t). '

: | p—————o
Excitation Physica} Response
—— syﬁteln b

Fig. 1-1. A physical situation.

RS

Symbolically, we may ﬁrrite : o i
er(t) — wy(t), : (1-1).
ea(t) — wa). Fl g

Then, for a linear system. .
e1(t) + ea(t) > wi(t) + ws(d). (1-3)

Relation (1-3), in conjunction with (1-1) and (1-2), states that a supe;:-
position of excitation functions results in a response which is the super-
position of the individual response functions. Hence, from a physical
point of view, we may say that a necessary condition for a system to be linear
ts that the principle of superposition applies. We note in passing that the
different excitations do not have to be-applied on the same part of the
system. ;

The validity of the principle of superposition. means that the presence
of one excitation does not affect the responses due to other excitations;
there are no interactions among responses of different excitations within

-a linear system. To analyze the combined effect of a number of excita-
ticns on a linear system, we can start with the analysis of the effect of each
individual excitation as if the other excitations were not present, and then
combine (add, or superpose) the results.
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If there are n identical excitations applied to the same part of the system,
that is, if :
er(t) = ex(t) = - - - = e,(t), (1-4)

L

then, for a linear system,

3 o) = i) = 30 = nons(0) (1-5)
k=1

k=1

Comparing relation (1-5) with (1-1), we see that n appears as a scale
factor (a magnitude change). Hence, a characteristic of linear systems is
that the magnitude scale factor is preserved. 'Chis characteristic is sometimes
referred to as the proverty of homogeneity. :

At this ‘point the reader must be warned that although the “deriva-
tion” of (1-5) from (1-3) seemed flawless, there are situations in which we
cannot automatically assume the property of homogeneity ( 1-5) when the
principle of superposition (1-3) holds. This may be illustrated by the
following example. Let Fig. 1-2 represent a nonlinear system in which the
filtérs 1 and 2 separate the input signal or excitation into two nonover-
lapping spectral bands. Then if the spectrum of e;(t) falls entirely inside
the passband of filter 1 and that of es(t) falls entirely inside the passband
of filter 2, relation (1-3) -would be satisfied and yet the system remains
nonlinear. Here, then, we have a situation where relation (1-3) does not
imply relation (1-5). It is for this reason that the properties of superposi-
tion and homogeneity should be regarded as two separate requirements
for a linear system. A system is linear.if and only if both (1-3) and (1-5)
are satisfied. . :

Filter 1 | ] Nonlinear
™1 device 1 wy(f) + wo(t)

e1(t) + ex(t)
Filter 2 | Nonlinear

device 2

Fre. 1-2. A nonlinear system.

There is another ‘physical aspect that characterizes a linear system
with constant parameters. If the excitation function e(¢) applied to such
a system is an alternating function of time with frequepcy f, then the
steady-state response w(t), after the initial transient has died out, appear-
ing in any part of the system will also be alternating with the frequency f.
We were aware of this fact when we solved a-c circuit problems. When a
60-cycle source is applied to a network of fized, linear elements R, L, and
C, the voltages and currents in all parts of the network will also be of
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'60-cycle frequency; no frequencies other than that of the source can exist
in the network after transients have died out. In other words, stationary
(non-time-varying) linear systems create no new frequencies. The qualifica-
tion of stationarity implies that if :

e(t) — w(t) (1-6)
then
Y el 1) 2wt —7), (1-7)

where 7 is'an arbitrary time delay. This qualification is to exclude situa-
tions with variable system -parameters. - A familiar example for such a
situation is the arbon microphone circuit, in which a sinusoidal variation
‘of the resistance in an R-IL circuit will produce currents of harmonic
frequencies. Another example is a linear radar system in which a moving
target will cause a so-called Doppler frequency shift:

We occasionally hear the use of the terms “linear oscillators,”. “linear
modulators,” and “linear detectors.” These are unfortunate choices of
words. Oscillators are generators of definite frequencies, in which the
only sources are d-c (zero frequency). Linear systems with constant
parameters cannot do this. It is also evident that some sort of nonlinear
process is there to limit the oscillation amplitude. Modulators inherently
involve multiplication of frequencies and are not linear devices. The term
“linear detectors” is rather commonly used for large-signal detectors
where the detected output follows the envelope of the modulated carrier
at the input. But large-signal detectors operate under class C conditions
and are basically nonlinear. They are sometimes called “linear detectors”
perhaps to emphasize their difference from small-signal or square-law.
detectors. : ;

The physical viewpoints that have been discussed in this section will
become clearer and can all be proved after we have examined the charac-
teristics of a linear system from a mathematical point of view. This will be
done in the next section. '

1-3 Linear system from a mathematical viewpoint. In mathematical
language we can define linear systems as systems whose behavior is gov-
erned by linear equations, whether linear algebraic equations, linear dif-
ference equations, or linear differential equations. Let us be more specific
with a typical linear differential equation, since we shall be dealing with
differential equations throughout this book:

; d2 d -
@%)a—% ay d—z: + aow = e(t). (1-8)
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In Eq. (1-8), ¢ is used as the independent variable,* e is the excitation
function, and w is the response function. Coefficients a; and a are system
- parameters determined entirely by the number, type, and arrangement
of the elements in the system; they may or may not be functions of the
independent variable ¢{. Since there are no partial derivatives (there is
only one independent variable) in Eq. (1-8), and the highest order of the
derivative is 2, Eq. (1-8) is an ordinary differential equation of the second.
order.tf Equation (1-8) is a linear ordinary differential equation of the
second order because neither the dependent variable w nor any of its
derivatives is raised to a power greater than one and because none of its
terms contains a product of two or more derivatives of the dependent
variable or a product of the dependent variable and one of its derivatives.

The validity of the principle of superposition here can be verified as
follows. We assume that the excitations e;(t) and es(t) give rise to re-
sponses w,(t) and wq(t) respectively, as before. Hence

d’w dw

dt21+ ay dtl + aOWI =€y, (1_9) :
d2

d;uz)z S dt 2 + agws = e;. (1-10)

Adding Egs. (1-9) and (1-10), we have directly

2 : :
Edt—g (wy + wg) + 01(%(101 + w3) + ag(wy + w2) = (e1 + e3). (1-11)

* Although the symbol ¢ is used hete, the independent variable does not have
to be time. It is just a mathematical symbol. What it is in a physical system
depends upon the problem; 1t may be time, distance, angle, or some other
physical quantity.

T The degree of a differential equation is the same as the power of the highest
derivative in the equation. Hence Eq. (1-8) is-of the first degree; an equation
like

(d_w) _afuan (),
dat2 di2 di s dt)

is of the third degree; and an equation like

dw
w4 t \/ ik
which ean be reduced to

; dw\? dw 2 <dw>2 : dw 2

is of the second degree.
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Equation (1-11) states that the response of the system to an excitation
e1(t) + e2(t) is equal to the sum of the responses to the individual excita-
tions, w,(¢) + wy(¢). Note that the principle of superposition applies and
the system is.linear even when the coefficients ay and aqy are functions of the
independent variable {. The property of homogeneity (preservation of the
magnitude scale factor) can also be easily verified. y

The reader can satisfy himself in.proving that the principle of super-
- position applies to none of the following equations:

d? d ; :
Tt U+ 2 = 5P (1-12)
du 2 o8
F73 + U~ u" = sin%y, (1-13)
2-N\2 5
t(%ﬁ) 4 5% + % = ¢, (1-13)

Equation (1-12) is nonlinear because the second term, y(dy/dz) is a prod-
uct of the dependent variable and its derivative; Eq. (1-13) is nonlinear
because the third term, u?, is a second power of the dependent variable;
and Eq. (1-14) is nonlinear because the first term #(d%/d¢%)? contains a
second power of a derivative of the dependent variable. ‘The existence of
powers or other nonlinear functions of the independent variable does not
make an equation nonlinear.

1-4 General properties of linear differential equations. There exist cer-
tain properties which are characteristic of all linear difierential equations.
We shall discuss these general properties here without referring to any
particular physical situation but with a view toward understanding the
nature of linear systems better. We shall make no attempt to solve the
equations in this section. : '

An ordinary linear differential equation of an arbitrary order n may be
written as :

n n—1: g z
ar(® G+ @O T 4 a0 % o = o), (1-15)

where the coefficients a,(t), a,_(?), . . . , @1(), ao(t) and the right member
of the equation, e(t), are given functions of the independent variable ¢,
determined by the system and the excitation function respectively. The
equation is said to be homogeneous if e(f) = 0, and nonhomogeneous if
e(t) #= 0.

L ]



1-4] GENERAL PRORBRTIES OF LINEAR DIFFERENTIAL EQUATIONS ' 7

It is convenient to employ an abbreviated symbol for the long left

side of the equation. Thus, if e(f) = 0, we represent the homogeneous
linear differential equation as follows:

[an(t) T an—1(f) g;—_l + -+ ar(d) % i o ao(t)] w(t) = 0.

Using the gbbreviation

-1
L = on(§) G5 0as() Gy 0+ 0 G+ 00, (1-16)

‘we write
Llw] = 0, (1-17)

where L can be regarded as an operator, operating on the dependent
variable w.

(A) Since multiplying the dependent vanable w by a constant mul-
tiplies each term in the equation by the same constant, we have

o it (1-18)
and :

Llew) = 0, if  Lw| = 0. (1-19)

Relations (1-18) and (1-19) state that if w(t) is a solution of the homo-
geneous equation L{w] = 0, then so also is cw(?).

(B) Since replacing w by w; + w, replaces each term by the'sum of °
two similar terms, one in w; and one in w,, we have

L{w, + ws] = Llw,] + L{w,] . (1-20)
and ,

Liw, +wo] =0, i Lw=0 and Lfws] = 0. (1-21)

Relations (1-20) and (1-21) state that if wy({) and ws(t) are solutions of
the homogeneous equation L{w] = 0, then so also is w,(¢) + w2(?).

By combining the results in (A)and (B), we see that if w1(t), wa(?), . . .,
wa(t) age solutions of the homogeneous linear differential equation L[w] = 10;
then so also i8 a linear combination of them: cyw;(t) + cowa(t) + - o
c,wa(t), where the ¢'s are arbitrary consiants. :

(C) The solution w.(f) = c1w;(t) + cowa(t) + + -+ + cawn(t) with n
(the order of the original differential equation) arbltrary constants is a
general solution of the homogeneous equation (1-17) provided the n
individual solutions w;(f), wz(t), ..., wx(f) are linearly independent.
The solutions are linearly independent if none of them can be expressed
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as a linear combiné,tiog of the others.* This general solution of the homo-
geneous equation is called the complementary funciion’ of the nonhomo-
geneous equation (1-15).

(D) If wy(t) is any particular solution of the nonhomogeneous equation
‘such that

Liw,] = e(t), (1-23)

then the sum of this particular solution (called a particular inlegral) and
the complementary function :

w(t) = we(t) + wp(t) :
== clwl(t) + Cz’lDz(t) + oy + c,‘w_,.(t),—l— w,,(t) (1—24)

is the general or complete solution of the nonhomogeneous equation (1-15).
In other words, any solution whatsoever of Eq. (1-15) can be written asa .
combination of the complementary function and a particular integral as

* The n solutions wy, wg, . . . , W, are linearly dependeni if constants by, be,

bs (which are not all zero) can be found such that ek

Buioy 2 paingar b B e (1-22)

Hence wy = ¢~(1+2¢ yy = ¢~(1-12¢ and wy = ¢~igin (2¢ — w/4) are linearly
dependent because - : .
-t
w3 = ¢ ' (cos7/4 sin 2t — sin /4 cos 2t) ='f/—§ (sin 2t — cos 2t)

-t

i [2% (L Ase %(ei2t+ e—:“u)]

V3
-t
= — =1+ )+ 1 — e
2V/'2
= — [+ e+ (1 — ]
2V/2 e
or e

(1 — jyws + (1 + wz + 2vZws = 0.

Compared with Eq. (1-22), we have by = (1 —j), b2 = (1 + j), and b3 = 24/3.
There is an elegant method for testing whether a set of n solutions are linearly
independent. They are linearly independent if their Wronskian does not vanish.
The Wronskian of n solutions wy(£), we(t), . . ., wa(t) is the determinant formed
by these functions and their first n — 1 derivatives. A detailed discussion of
this method is beyond the scope of this book. Interested readers are referred to
E. L. Ince, Ordinary Differential Equations, Sec. 5.2, Dover Publications, 1944.
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Eq. (1-24). For, if w is any solution of Eq. (1-15) and Wy 18 a ‘particular
integral, then, from Eq. (1-20), we can write :

Liw — wp] = L[w] — L{w,]
: = e(t) — e(t) = 0.

Hence w — Wp = W, is a solution of the homogeneous equation (1-17),
which, by property (C), must be expressible as

W — Wy = 1wy () + cowa(t) + - - - + cawnlt).

Transferring w, to the right side, we obtain the solution in the form of
(1-24).

“ (E) The n arbitrary constants ¢;, €2, . :., €y In the;complete solution
(1-24) are determined by # known values* of the response function or its
derivatives for specific values of the independent variable.

Remarks (A) through (E) above apply to general linear differential
equations of an arbitrary order. If all the coefficients Oy o1, ..., Gy,
and ap are constants, we have a linear differential equation with constant
coefficients. Linear differential equations with constant coefficients are
of extreme importance because they characterize a large number of physical
and engineering situations. They are of such a nature that transformation
methods can be applied with advantage. They will receive our prime
attention throughout this book. :

1+5 Illustrative examples. A few examples are givén below to illus-
trate the properties of linear differential equations and their solutions.

ExampLE. 1-1. Verify that the function
Yy=c1sinz 4 cycosz — 3z cosz
is a general solution of the linear differential equation

2,
ZTZ SEe T © (1-25)

Solution. Let us examine the complementary function and the particular
integral separately: y = y, + D)

* These are commonly referred to as instial conditions, but this term is inap- '
propriate when the independent variable is not time. Even when the independ-
ent variable is time, this term does not always apply because final conditions or
conditions given at any ¢ are just -as useful as initial conditions in_determining '
the arbitrary constants. :



