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PREFACE

For 1978/9 the Ring Theory Study Group at Bedford College rather
naively set out to learn what had been done in the preceding decade
on groups of cohomological dimension one. This is a particularly
attractive subject, that has witnessed substantial success,
essentially beginning in 1968 with results of Serre, Stallings and
Swan, later receiving impetus from the introduction of the concept
of the fundamental group of a connected graph of groups by Bass and
Serre, and recently culminating in Dunwoody's contribution which
completed the characterization. Without going into definitions,
one can state the result simply enough: For any nonzero ring R
(associative, with 1) and group G, the augmentation ideal of the
group ring R[G] is right R[G]l-projective if and only if G is
the fundamental group of a graph of finite groups having order
invertible in R.

These notes, a (completely) revised version of those prepared
for the Study Group, collect together material from several
sources to present a self-contained proof of this fact, assuming
at the outset only the most elementary knowledge - free groups,
projective modules, etc. By making the role of derivations even
more central to the subject than ever before, we were able to
simplify some of the existing proofs, and in the process obtain
a more general "relativized" version of Dunwoody's result, cf
Iv.2.10. An amusing outcome of this approach is that we here have
a proof of one of the major results in the theory of cohomology of
groups that nowhere mentions cohomology - which should make this

account palatable to hard-line ring theorists. (Group theorists
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will notice we have not touched upon the fascinating subject of

ends of groups, usually one of the cornerstones of this topic,

cf Cohen [72]; happily, an up-to-date outline of the subject
of ends is available in the recently published lecture notes of

Scott-Wall [79].)

There are four chapters. Chapter I covers, in the first six
sections, the basics of the Bass-Serre theory of groups acting on
trees (using derivations to prove the key theorem, I.5.3), and
then in I.§8, I.§9 gives an abstract treatment of Dunwoody's
results on groups acting on partially ordered sets with involution.
Chapter II gives the standard classical applications of the Bass-
Serre theory, including a proof of Higgins' generalization of the
Grushko-Neumann theorem (based on a proof by I.M.Chiswell).

Chapter III presents the Dunwoody-Stallings decomposition of a
group arising from a derivation to a projective module, and gives
Dunwoody's accessibility criteria. Finally, in Chapter IV, the
groups of cohomological dimension one are introduced and
characterized; the final section describes the basic consequences
for finite extensions of free groups.

A reader interested mainly in the projectivity results of IV.§2
can pursue the following course:Chapter I1:§§1-6,588,§89;

Chapter II:3.1,3.3,3.5; Chapter IIT:1.1,1.2,82,83,4.1-4.8,4.11,
Chapter IV:§1,82.

Since the subject is quite young, and the notation to some
extent still tentative, we have felt at liberty to introduce new
terminology and notation wherever it suited our needs, or
satisfied our category-theoretic prejudices. At these points, ‘we

have made an effort to indicate the notations used by other authors.
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Through ignorance, we have been unable to give much in the way
of historical remarks, and those we have given may be inaccurate,
since, as both Cohen and Scott have remarked, it is difficult to
attribute, with any precision, results which existed implicitly
in the literature before being made explicit.

The computer microfilm drawings, pp 13, 25, were produced by
the CDC 7600 at the University of London Computer Centre, using
their copyrighted software package DIMFILM. I thank Chris Cookson
and Phil Taylor for their helpful technical advice in using this
package.

I thank all the participants of the Study Group for their kind
indulgence in this project, and especially Yuri Bahturin and Bill
Stephenson for relieving me (and the audience) by giving many of
the seminars.

I gratefully acknowledge much useful background material (and
encouragement) from the experts at Queen Mary College, I.M.
Chiswell and D.E. Cohen for Chapters I-II and III-IV respectively.
Bedford College Warren Dicks

London
January 1980



NOTATION AND CONVENTIONS

The following notation will be used:

¢ for the empty set;
z for the ring of integers;
0 for the field of rational numbers;
C for the field of complex numbers;
A - B for the set of elements in A not in Bj
|A| for the cardinal of A;

for the set of all functions from A to
B B, the elements thought of as A-tuples
w1th entries chosen from B;

Ax B, IB for the Cartesian product;
aeA

Av B, VB for the disjoint union of sets;
aeA ¢

A®B, & B, for the direct sum of modules.
aeA

Functions are usually, but not always, written on the right of
their arguments.

All theorems, propositions, lemmas, corollaries, remarks and
conventions are numbered consecutively in each section, thus
4.3 CONVENTION follows 4.2 DEFINITION in section I.4 (and
outside Chapter I they are referred to as I.4.3 and I.4.2). The
end of each subsection is indicated by 0.

References to the bibliography are by author's name and the last
two digits of the year of publication, thus Serre [77], with
primes to distinguish publications by the same author in the same

year.
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CHAPTER I
GROUPS ACTING ON GRAPHS

1. GRAPHS

By a graph X we mean a set X that is given as the disjoint

union VVE of two sets V = V(X) # ¢ and E = E(X), given with

two maps 1,T:E > V. The elements of V are called the vertices
of X, and the elements of E the edges of X. -For e ¢ E, the

vertices 1e, Te are called the initial and terminal vertices of

e, respectively. An edge will usually be depicted

e e Te

although we also allow the possibility that 1e = te, in which
case e 1is called a loop.

Let us fix a graph, X.

For any subset S of X we write V(S) = S n V(X), and
E(S) = S n E(X). If for each e € E(S) we have 1e, te e V(S),
then we say S is a subgraph of X.

1

For each edge e of X we define formal symbols e!, €', to

be thought of as travelling along e the right way and the wrong

1 o g@l = b o= i =

way, respectively. We set 1e’ = 1€ 1e, Te 1€ Te.
By a path P in X 1is meant a finite sequence,
€
(1) P = Voaeilavla--~aennavn
usually abbreviated ei1,e§2,...,e§n, where n 2 0, €; = +1, and
el €1 .
1eil = Vi_go reil = v, fori=1,...,n. We shall call v, the
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initial vertex of P, and v the terminal vertex of P, and say
P is a path from vy o v, of length n.

Two elements of X are said to be connected if there is a path
in X containing both of them. This defines an equivalence
relation on X. An equivalence class of this relation is called

a connected component of X (or simply, a component), and it is

easily seen to be a subgraph of X. We say that X 1s connected

if it has only one component.

Let P be a path in X as in (1). We say that P is reduced
if for each i = 1,...,n-1, if €41 ©4 then €41 £ “€5»
that is, €541 ° €4 If P is not reduced then for some
i=1,...,n-1, we have €i41 - €4 and €i41 = "E33 in this case

we say that a simple reduction of P gives the path

€5 _ €3 €
ef1,...,e%1-1 otit2 ,e N,

1 i-1 i+2 **""°"n

By successive simple reductions we can transform P to a reduced
path, called the reduced form of P. It is in fact unique, as
can be shown by induction on the length of P, noting that any
two simple reductions of P either give equal paths, or each can
be followed by a suitable simple reduction to give equal paths.

A circuit at a vertex v of X 1is a reduced path from v to
itself of length at least 1. A graph with no circuits is called
a forest, and a connected forest is called a tree. In a tree
there is, by the above, a unique reduced path between any pair of
vertices; this path will be called a geodesic between the vertices.

By Zorn's Lemma there is a subgraph X' of X having

V(X') = V(X) and maximal with the property that X' 1is a forest.
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By maximality, no two connected components of X' can be joined
by an edge of X, so two vertices connected in X must already be
connected in X'. In particular, if X 1is connected then so is

X', 1in which case X' 1is a tree, called a spanning tree or a

maximal subtree of the connected graph X.

Having assembled all these definitions, let us conclude this
section by giving an algebraic characterization of trees.

For any ring R and set S we write R[S] for the R-bi-

module freely generated by the R-centralizing set S. Thus
R[S] = ® Rs, with r.s = s.r for all r e R, s e S. The
seS
elements of R[S] will be expressed Ir .s = L S.Tg> where
SeS seS

rs e R, almost all zero.

1.1 PROPOSITION. Let R Dbe a nonzero ring, and X a graph.
Write E = E(X), V = V(X). There is a sequence of R-bimodules
(2) 0 + RLE]2— R[V] €+ R » 0

determined by (e)3 = 1e - te, (v)e =1 (e € E, v e V).

(i) The sequence is exact at R[V] if and only if X is

connected.

(ii) The sequence is exact at R[E] if and only if X 1is a

forest.

(iii) The sequence is exact if and only if X 1is a tree. In

this event, for any vertex vy of X, the map 3 has an

R-bimodule right inverse X(-,vg):R[V] » R[E] determined by, for

€ ;
veV, X(v,vg) = €.,e, + ... + ¢ e where ell,...,ein is the

171 n n

geodesic from v to vy, in the tree X.
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Proof. (i) The cokernel of 3 1is the R-bimodule presented on
generators v that centralize R, veV;
relations saying 1e = te for all e e€E.

Thus Coker 3 is RI[C], where C is the set of components of

X. Since R 1is nonzero, (i) follows.

(ii), (iii) If X 4is not a forest then X has some circuit

eil,...,ein with no repeated edges, and theg/ €184 + ... €.en

is a nonzero element of Ker 3 so (2) is‘néé’exact at RIE].

Conversely, if X 1is a forest tbeﬂ'each component of X is a

tree, and it suffices to_peﬁé&der the case where X itself is a

tree. Here, for anyyedge e of X, X(-,vy) sends
ed (= 1e - Te) to X(i1e,vy) - X(te,ve) = X(1e,Te) = e.
That is, X(-,vp) 1is a right inverse of 3 as desired, and

this verifies all the claims. O

2. GRAPH MORPHISMS AND COVERINGS

Let T, X be graphs.

A morphism of graphs a:I' =+ X 1is the disjoint union of two maps

V(a):V(T) »+ V(X), E(a):E(r) » E(X) which have the property that

for each edge e of T, a(ie) = 1(ae), al(te) = t(ae). Thus
a( L8 W - ay_ae  aw

We use the terms isomorphism and automorphism of graphs in the

natural way.

For any vertex v of T, we define

(3) star(v) = {eecE(M)]| 1e = v} v {eeE(l)| 1e = v}.
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We say that a 1is locally surjective if for each vertex v of

'y, the induced map star(v) -+ star(ov) is surjective; and we

define locally injective analogously. If o is both locally

injective and locally surjective then it is said to be a local

isomorphism. For example, the morphisms

are both local isomorphisms.

2.1 PROPOSITION. Let a:T > X be a locally surjective graph

morphism, and v be a vertex of T. Any subtree X' of X

containing av 1lifts back to a subtree TI' of T containing v,

that is, oa:T' = X' 1is an isomorphism.

Proof. By Zorn's Lemma there exists a maximal connected subgraph
' of T containing v such that a:I''" + X' 1is injective.
Notice that T' 1is then a tree. If o 1is not an isomorphism

then there is a path P in X' starting at av such that P
does not lie entirely in a(T'). Since X' 1is a tree, P
traverses some edge e that does not lie in a(I'') and has
exactly one vertex in oa(T'). But as o is locally surjective,
we can find a preimage of e in T connected to T', and this

contradicts the maximality of T'. Thus o is an isomorphism. 0O

2.2 COROLLARY. If o:T +» X is a locally surjective graph

morphism, and X 1is connected then a 1is surjective. 0O
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Notice that in the situation of 2.2 we can choose a maximal
subtree T of the connected graph X and 1lift it back to a
subtree T' of T by 2.1, and for each edge e of X not in
T we can, by considering star(ie), choose an edge f in T
such that of = e and 11f € T'. This will give us a subset
S of T such that S is a transversal for a (that is,

a:S » X 1is bijective). Further, S has the property that any
two vertices of S are joined by a path all of whose terms are
ip S, and for any edge e of S we have 1e e€ S; such a

subset will be said to be connected. It is clear what we mean

by a maximal subtree of S, so we can state the foregoing as

follows.
2.3 PROPOSITION. Let a:T = X be a locally surjective graph
morphism and X be connected. Any maximal subtree T of X

lifts back to a subtree T' of T, and there exists a connected

transversal S of o which has T' as maximal subtree. [

A local isomorphism a:T + X between connected graphs is called
a covering, or a covering of X. The covering is said to be
universal if T 1is a tree. By 2.2 any covering is surjective;

if X 1is a tree we can say more.

2.4 PROPOSITION. Any covering of a tree is an isomorphism.

Proof. Let X be a tree and o:T + X be a covering. We have
seen that o 1is surjective so it remains to show that a is
injective. Suppose that two vertices of I are mapped by o to

a single vertex v of X. Then the reduced path between them in



GROUP ACTIONS §3

I' is mapped to a reduced path in X from v to v, since a
is locally injective. But X 1is a tree so the path has length
zZero. This shows that o 1is injective on vertices. Since a
is locally injective, it is therefore injective on edges also.

Hence o 1is an isomorphism. [

3. GROUP ACTIONS

Let G be a group.

We call a set X a G-set, or say that G acts on X, if
there is given a group homomorphism from G to Sme’ the group
of all permutations of X. (As mappings the permutations are
viewed as being written on the left of their arguments.) The
image of an element g of G will usually be thought of as left
multiplication by g, and denoted x & gx (x € X). For any

x € X, the stabilizer of x is defined to be the subgroup

G, = lg e G| gx = x}, and the orbit of x is defined to be the

G-subset Gx = {gx| g ¢ G} of X. Notice that for g e G, x e X,

we have ng = nggd, so the stabilizers of two points in the
same orbit are conjugate. We write h& for g'hg, so
=1
= g s
ng = Gx . For x ¢ X, the set of left cosets of Gx in G,
G/Gx = {ng| g ¢ G}, is in bijective correspondence with Gx,

under ng «+ gx. This is actually an isomorphism of G-sets, if

G/Gx is given its natural G-action by left multiplication. The
set of orbits is denoted G\X. There is a natural surjection
X » G\X, x h» X = GX. Choose a transversal S in X for the

G-action (that is, S 1is a transversal for X =+ G\X). Attach to
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each element of G\X a subgroup of G by writing, for each x € S,

G(x) = G_. Then as G-set, X = VvV G/6(X).
o _
xeG\X

In some situations we shall want G to act on some set X on
the right, in which case X will be called a right G-set. The
set of orbits is then denoted ® X/G, a notation which generalizes
the use of G/GX above.

Let X be a graph, and write V = V(X), E = E(X).

We say that G acts on X, or that X is a  G-graph, if

there is given a group homomorphism from G to the group of all

graph automorphisms of X. Then V, E are G-sets in such a way
that gie = 1ge, gte = 1ge for all e ¢ E, g e G. Pictorially,
g( LS ¥ - B8v 8§ gw

3.1 EXAMPLE. Let A be a subset of G. The Cayley graph

I' = T(G,A) 1is defined as follows: V(TI) G, E(T) = GxA, and

the incidence maps are given by 1(g,a) g, 1(g,a) = ga
( (g,a) e E(T) ). Here G acts on T in a natural way by left
multiplication on the vertices and on the first components of the

edges. Some examples are illustrated on p. 13. We remark that

I'(G,A) 1is connected if and only if A generates G. [

Let G act on X.

We write G\X for the graph with V(G\X) = G\V, E(G\X) = G\E,
where the incidence maps are given by 1(Ge) = Gie,
17(Ge) = Gte, clearly well-defined.

There is then a natural surjective morphism of graphs,

X > G\X, x bk X = Gx. For any vertex v of X, the induced map



