Transactions on

Aspect-Oriented
Software

= Development li

Awais Rashid - Mehmet Aksit
Editors-in-Chief

Awais Rashid Mehmet Aksit (Eds.)

Transactions on
Aspect-Oriented
Software Development I1

@ Springer

Volume Editors

Awais Rashid

Lancaster University

Computing Department
Lancaster LA1 4WA, UK
E-mail: awais @comp.lancs.ac.uk

Mehmet Aksit

University of Twente

Department of Computer Science
Enschede, The Netherlands
E-mail: aksit@ewi.utwente.nl

Library of Congress Control Number: 2006921902

CR Subject Classification (1998): D.2, D.3, 1.6, H4, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-48890-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48890-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11922827 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indhan Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4242

Editorial

Welcome to the second volume of Transactions on Aspect-Oriented Software
Development. The successful launch of the journal and publication of its first volume
in March 2006 has been followed by a steady stream of submissions as well as several
special issue proposals on topics ranging from Early Aspects and aspect interactions
through to aspect-oriented programming and middleware technologies. This volume
comprises two regular papers and six papers constituting a special section on AOP
Systems, Software and Middleware.

The first article “On Horizontal Specification Architectures and Their Aspect-
Oriented Implementations” by Aaltonen, Katara, Kurki-Suonio and Mikkonen proposes
the use of horizontal architectures to improve alignment between system requirements
and aspect-oriented implementations realizing those requirements. The authors’
approach builds on their earlier work on the DisCO method which utilizes the notion of
superpositions as a basis of aspect composition. The second article “A Framework
for Policy Driven Auto-Adaptive Systems Using Dynamic Framed Aspects” by
Greenwood and Blair synthesizes techniques such as event—condition—action rules and
parameterization with dynamic AOP to develop reusable aspects that can be woven at
run time. The goal of the authors’ work is to support auto-adaptive behaviour using such
reusable aspects. They present performance measurements as well as metrics-based
evaluation of their approach in this context.

The remaining six papers focus on various topics in AOP systems, software and
middleware. The guest editors, Yvonne Coady, Hans-Arno Jacobsen and Mario
Siidholt, provide an introduction to these in their editorial.

We wish to thank the editorial board for their continued guidance, commitment
and input on the policies of the journal, the choice of special issues as well as
associate-editorship of submitted articles. We also thank the guest editors, Yvonne
Coady, Hans-Arno Jacobsen and Mario Siidholt, for putting together the special
section on AOP systems, software and middleware. Thanks are also due to the
reviewers who volunteered time from their busy schedules to help realize this
volume. Most importantly, we wish to thank the authors who have submitted
papers to the journal so far, for their contributions maintain the high quality of
Transactions on AOSD.

The journal is committed to publishing work of the highest standard on all facets
of aspect-oriented software development techniques in the context of all phases of
the software life cycle, from requirements and design to implementation,
maintenance and evolution. The call for papers is open indefinitely and potential
authors can submit papers at any time to: taosd-submission@comp.lancs.ac.uk.
Detailed submission instructions are available at: http://www.springer.com/sgw/
cda/frontpage/0,,3-164-2-109318-0,00.html. Two more special issues on current
important topics, “Early Aspects” and “Aspects, Dependencies and Interactions”,
are in preparation. Calls for such special issues are publicized on relevant Internet
mailing lists, Web sites as well as conferences such as the Aspect-Oriented

VI Editorial

Software Development conference. We look forward to further high-quality
submissions from prospective authors and their publication in future volumes of
Transactions on AOSD.

Awais Rashid and Mehmet Aksit
Co-editors-in-chief

Organization

Editorial Board

Mehmet Aksit, University of Twente

Don Batory, University of Texas at Austin
Shigeru Chiba, Tokyo Institute of Technology
Siobhén Clarke, Trinity College Dublin

Theo D’Hondt, Vrije Universiteit Brussel
Robert Filman, Google

Shmuel Katz, Technion-Israel Institute of Technology
Gregor Kiczales, University of British Columbia
Karl Lieberherr, Northeastern University

Mira Mezini, University of Darmstadt

Ana Moreira, New University of Lisbon

Linda Northrop, Software Engineering Institute
Harold Ossher, IBM Research

Awais Rashid, Lancaster University

Douglas Schmidt, Vanderbilt University

David Thomas, Bedarra Research Labs

List of Reviewers

Don Batory

Klaas van den Berg
Lodewijk Bergmans
Gordon S. Blair
Lynne Blair

Johan Brichau

Fei Cao

Walter Cazzolla
Shigeru Chiba
Ruzanna Chitchyan
Siobhén Clarke
Thomas Cleenewerk
Yvonne Coady
Pascal Costanza
Geoff Coulson
Krysztof Czarnecki
Cormac Driver
Eric Eide

Eric Ernst

Tzilla Elrad

Robert France
Marc E. Fiuczynski
Lidia Fuentes

Joerg Kienzle
Micheal Kircher
Julia Lawall

Cristina Lopez
David H. Lorenz
Florence Maraninchi
Jean-Marc Menaud
Mira Mezini

Gilles Muller

Juan Manuel Murillo
Gail Murphy

James Noble

Carlos Noguera
Harold Ossher

Klaus Ostermann
Renaud Pawlak
Monica Pinto
Ragghu Reddy
Martin Robillard
Douglas Schmidt
Christa Schwanninger
Marc Segura-Devillechaise
Ian Sommerville

VIII Organization

Alessandro Garcia
Chris Gill

Andy Gokhale
Aniruddha Gokhale
Jeff Gray

Phil Greenwood
Stephan Hanenberg
William Harrison
Stephan Herrmann
Kabir Khan

Gregor Kiczales

Olaf Spinczyk
Stefan Tai

Eric Tanter

Wim Vanderperren
BartVerheecke

J. Vitek

Jon Whittle
Xiaoqing Wu
Egon Wuchner
Charles Zhang

Printing: Mercedes-Druck, Berlin
Binding: Stein+Lehmann, Berlin

Lecture Notes in Computer Science

For information about Vols. 1-4203

please contact your bookseller or Springer

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XII, 474 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC. XV, 371
pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part II. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part II. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.

Vol. 4273: LE. Cruz, S. Decker, D. Allemang, C. Preist,

D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), The
Semantic Web - ISWC 2006. XXIV, 1001 pages. 2006.

Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-
dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Vol. 4271: F.V. Fomin (Ed.), Graph-Theoretic Concepts
in Computer Science. XIII, 358 pages. 2006.

Vol. 4270: H. Zha, Z. Pan, H. Thwaites, A.C. Addison,
M. Forte (Eds.), Interactive Technologies and Sociotech-
nical Systems. X VI, 547 pages. 2006.

Vol. 4269: R. State, S. van der Meer, D. O’Sullivan, T.

Pfeifer (Eds.), Large Scale Management of Distributed
Systems. X1II, 282 pages. 2006.

Vol. 4268: G. Parr, D. Malone, M. O Foghli (Eds.), Au-
tonomic Principles of IP Operations and Management.
XIII, 237 pages. 2006.

Vol. 4267: A. Helmy, B. Jennings, L. Murphy, T. Pfeifer
(Eds.), Autonomic Management of Mobile Multimedia
Services. XIII, 257 pages. 2006.

Vol. 4266: H. Yoshiura, K. Sakurai, K. Rannenberg, Y.
Murayama, S. Kawamura (Eds.), Advances in Informa-
tion and Computer Security. XIII, 438 pages. 2006.

Vol. 4265: N. Lavrac, L. Todorovski, K.P. Jantke (Eds.),
Discovery Science. XIV, 384 pages. 2006. (Sublibrary
LNAI).

Vol. 4264: J.L. Balcézar, PM. Long, F. Stephan (Eds.),
Algorithmic Learning Theory. XIII, 393 pages. 2006.
(Sublibrary LNAI).

Vol. 4263: A. Levi, E. Savas, H. Yenigiin, S. Balcisoy,
Y. Saygin (Eds.), Computer and Information Sciences —
ISCIS 2006. XXIII, 1084 pages. 2006.

Vol. 4261: Y. Zhuang, S. Yang, Y. Rui, Q. He (Eds.),
Advances in Multimedia Information Processing - PCM
2006. XXII, 1040 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4259: S. Greco, Y. Hata, S. Hirano, M. Inuiguchi,
S. Miyamoto, H.S. Nguyen, R. Stowiriski (Eds.), Rough
Sets and Current Trends in Computing. XXII, 951 pages.
2006. (Sublibrary LNAI).

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4256: L. Feng, G. Wang, C. Zeng, R. Huang (Eds.),
Web Information Systems — WISE 2006 Workshops.
X1V, 320 pages. 2006.

Vol. 4255: K. Aberer, Z. Peng, E.A. Rundensteiner, Y.
Zhang, X. Li (Eds.), Web Information Systems — WISE
2006. XIV, 563 pages. 2006.

Vol. 4254: T. Grust, H. Hopfner, A. Illarramendi, S.
Jablonski, M. Mesiti, S. Miiller, P.-L. Patranjan, K.-
U. Sattler, M. Spiliopoulou (Eds.), Current Trends in
Database Technology — EDBT 2006. XXXI, 932 pages.
2006.

Vol. 4253: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part III. XXXII, 1301 pages. 2006. (Subli-
brary LNAI).

Vol. 4252: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IT. XXXIII, 1335 pages. 2006. (Subli-
brary LNAI).

Vol. 4251: B. Gabrys, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXVI, 1297 pages. 2006. (Sublibrary
LNAI).

Vol. 4249: L. Goubin, M. Matsui (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2006. XII,
462 pages. 2006.

Vol. 4248: S. Staab, V. Svitek (Eds.), Managing Knowl-
edge in a World of Networks. XIV, 400 pages. 2006.
(Sublibrary LNAI).

Vol. 4247: T.-D. Wang, X. Li, S.-H. Chen, X. Wang,
H. Abbass, H. Iba, G. Chen, X. Yao (Eds.), Simulated
Evolution and Learning. XXI, 940 pages. 2006.

Vol. 4246: M. Hermann, A. Voronkov (Eds.), Logic
for Programming, Artificial Intelligence, and Reasoning.
XIII, 588 pages. 2006. (Sublibrary LNAI).

Vol. 4245: A. Kuba, L.G. Nyuil, K. Palagyi (Eds.), Dis-
crete Geometry for Computer Imagery. XIII, 688 pages.
2006.

Vol. 4244: S. Spaccapietra (Ed.), Journal on Data Se-
mantics VII. X1, 267 pages. 2006.

Vol. 4243: T. Yakhno, E.J. Neuhold (Eds.), Advances in
Information Systems. XIII, 420 pages. 2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4241: R.R. Beichel, M. Sonka (Eds.), Computer Vi-
sion Approaches to Medical Image Analysis. XI, 262
pages. 2006.

Vol. 4239: H.Y. Youn, M. Kim, H. Morikawa (Eds.),
Ubiquitous Computing Systems. X VI, 548 pages. 2006.

Vol. 4238: Y.-T. Kim, M. Takano (Eds.), Management of
Convergence Networks and Services. XVIII, 605 pages.
2006.

Vol. 4237: H. Leitold, E. Markatos (Eds.), Communica-
tions and Multimedia Security. XII, 253 pages. 2006.

Vol. 4236: L. Breveglieri, I. Koren, D. Naccache, J.-P.
Seifert (Eds.), Fault Diagnosis and Tolerance in Cryp-
tography. XIII, 253 pages. 2006.

Vol. 4234: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part I1I. XXII, 1227
pages. 2006.

Vol. 4233: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part II. XXII, 1203
pages. 2006.

Vol. 4232: 1. King, J. Wang, L. Chan, D. Wang (Eds.),
Neural Information Processing, Part I. XLVI, 1153
pages. 2006.

Vol.4231:J. F.Roddick, R. Benjamins, S. Si-Said Cherfi,
R. Chiang, C. Claramunt, R. Elmasri, F. Grandi, H. Han,
M. Hepp, M. Hepp, M. Lytras, V.B. Misi¢, G. Poels,
L.-Y. Song, J. Trujillo, C. Vangenot (Eds.), Advances in
Conceptual Modeling - Theory and Practice. XXII, 456
pages. 2006.

Vol. 4230: C. Priami, A. Ingo6lfsdéttir, B. Mishra, H.R.
Nielson (Eds.), Transactions on Computational Systems
Biology VII. VII, 185 pages. 2006. (Sublibrary LNBI).

Vol. 4229: E. Najm, J.F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.
Vol. 4228: D.E. Lightfoot, C.A. Szyperski (Eds.), Mod-
ular Programming Languages. X, 415 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative

Approaches for Learning and Knowledge Sharing. XVII,
721 pages. 2006.

Vol. 4226: R.T. Mittermeir (Ed.), Informatics Education
— The Bridge between Using and Understanding Com-
puters. XVII, 319 pages. 2006.

Vol. 4225: J.F. Martinez-Trinidad, J.A. Carrasco Ochoa,
J. Kittler (Eds.), Progress in Pattern Recognition, Image
Analysis and Applications. XIX, 995 pages. 2006.

Vol. 4224: E. Corchado, H. Yin, V. Botti, C. Fyfe (Eds.),
Intelligent Data Engineering and Automated Learning —
IDEAL 2006. XXVII, 1447 pages. 2006.

Vol. 4223: L. Wang, L. Jiao, G. Shi, X. Li, J. Liu (Eds.),
Fuzzy Systems and Knowledge Discovery. XXVIII,
1335 pages. 2006. (Sublibrary LNAI).

Vol. 4222: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu (Eds.),
Advances in Natural Computation, Part II. XLII, 998
pages. 2006.

Vol. 4221: L. Jiao, L. Wang, X. Gao, J. Liu, F. Wu
(Eds.), Advances in Natural Computation, Part I. XLI,
992 pages. 2006.

Vol. 4219: D. Zamboni, C. Kruegel (Eds.), Recent Ad-
vances in Intrusion Detection. XII, 331 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4217: P. Cuenca, L. Orozco-Barbosa (Eds.), Per-
sonal Wireless Communications. XV, 532 pages. 2006.

Vol. 4216: M.R. Berthold, R. Glen, I. Fischer (Eds.),
Computational Life Sciences II. XIII, 269 pages. 2006.
(Sublibrary LNBI).

Vol. 4215: D.W. Embley, A. Olivé, S. Ram (Eds.), Con-
ceptual Modeling - ER 2006. XVI, 590 pages. 2006.

Vol. 4213: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Knowledge Discovery in Databases: PKDD
2006. XXII, 660 pages. 2006. (Sublibrary LNAIT).

Vol. 4212: J. Fiirnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006. XXIII, 851
pages. 2006. (Sublibrary LNAI).

Vol. 4211: P. Vogt, Y. Sugita, E. Tuci, C. Nehaniv (Eds.),
Symbol Grounding and Beyond. VIII, 237 pages. 2006.
(Sublibrary LNAI).

Vol. 4210: C. Priami (Ed.), Computational Methods
in Systems Biology. X, 323 pages. 2006. (Sublibrary
LNBI).

Vol. 4209: F. Crestani, P. Ferragina, M. Sanderson (Eds.),
String Processing and Information Retrieval. XIV, 367
pages. 2006.

Vol. 4208: M. Gerndt, D. Kranzlmiiller (Eds.), High Per-
formance Computing and Communications. XXII, 938
pages. 2006.

Vol. 4207: Z. Esik (Ed.), Computer Science Logic. XII,
627 pages. 2006.

Vol. 4206: P. Dourish, A. Friday (Eds.), UbiComp 2006:
Ubiquitous Computing. XIX, 526 pages. 2006.

Vol. 4205: G. Bourque, N. ElI-Mabrouk (Eds.), Compar-
ative Genomics. X, 231 pages. 2006. (Sublibrary LNBI).

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. XVIII, 774 pages.
2006.

Table of Contents

On Horizontal Specification Architectures and Their Aspect-Oriented

ImMplementations cvveve e iiieieeernrosanenennene s 1
Timo Aaltonen, Mika Katara, Reino Kurki-Suonio,
Tommi Mikkonen

A Framework for Policy Driven Auto-adaptive Systems Using Dynamic
Framed ASPectSt 30
Phil Greenwood, Lynne Blair

Focus: AOP Systems, Software and Middleware

Guest Editors’ Introduction 66
Yvonne Coady, Hans-Arno Jacobsen, Mario Stdholt

Aspect-Oriented Development of Crosscutting Features in Distributed,
Heterogeneous SyStemsttt 69
Eric Wohlstadter, Premkumar Devanbu

Shakeins: Nonintrusive Aspects for Middleware Frameworks 101
Tal Cohen, Joseph (Yossi) Gil

Run-Time and Atomic Weaving of Distributed Aspects 147
Eddy Truyen, Wouter Joosen

TOSKANA: A Toolkit for Operating System Kernel Aspects 182
Michael Engel, Bernd Freisleben

Lean and Efficient System Software Product Lines: Where Aspects
Beati ObJects :ss susnssnsansmsmmsss spins 605 s0s0a 08 dnissdaissshi 227
Daniel Lohmann, Olaf Spinczyk, Wolfgang Schroder-Preikschat

Providing Configurable QoS Management in Real-Time Systems

with QoS Aspect Packages 256
Aleksandra Tesanovié, Mehdi Amirijoo, Jorgen Hansson

Author Index 289

On Horizontal Specification Architectures and
Their Aspect-Oriented Implementations

Timo Aaltonen, Mika Katara, Reino Kurki-Suonio, and Tommi Mikkonen

Institute of Software Systems
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland
firstname.lastname@tut.fi

Abstract. In order to provide better alignment between conceptual re-
quirements and aspect-oriented implementations, specification methods
should enable the encapsulation of behavioral abstractions of systems. In
this paper we argue that horizontal architectures, consisting of such be-
havioral abstractions, can provide better separation of concerns than con-
ventional architectures, while supporting incremental development for
more common units of modularity such as classes. We base our arguments
on our experiences with the DisCo method, where behavioral abstrac-
tions are composed using the superposition principle, a technique closely
associated with aspect orientation. Moreover, we demonstrate how the
alignment between an abstract, horizontally architected specification (or
model) and its aspect-oriented implementation can be achieved. Map-
pings are discussed that implement symmetric DisCo specifications both
in Hyper/J, which enables symmetric separation of concerns, and in As-
pectJ that uses asymmetric structuring.

1 Introduction

Postobject programming (POP) mechanisms, like those developed in aspect-
oriented programming [15, 30], provide means to modularize crosscutting
concerns, which are in some sense orthogonal to conventional modularity. The
background of this paper is in the observation that the same objective has been
pursued also at the level of formal specifications of reactive systems, and that the
results of this research are relevant for the theoretical understanding of POP-
related architectures and of the associated specification and design methods.

Unlike conventional software modules, units of modularity that are suited for
a structured description of the intended logical meaning of a system can be un-
derstood as aspects in the sense of aspect-oriented programming. We call such
units horizontal in contrast to conventional vertical units of modularity, such as
classes and processes. While the vertical dimension remains dominant because
of the available implementation techniques, the horizontal dimension can pro-
vide better separation of concerns than the vertical one improving, for example,
traceability of requirements and conceptual understanding of the features of the
system.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD II, LNCS 4242, pp. 1-29, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 T. Aaltonen et al.

A somewhat similar dualism exists in aspect-oriented specification and pro-
gramming languages [18]. Asymmetric approches, such as AspectJ (48], separate
between a conventionally structured base implementation and aspects that cut
across the units of the base implementation, such as classes. In contrast, no such
separation exists in symmetric approaches, such as Hyper/J [39], that consider
systems to be composed of aspects, or slices, that potentially cut across each
other.

Unfortunately, horizontal units of modularity in specification do not always
align with conventional implementation techniques that rely on vertical units of
architecture. However, a better alignment can be achieved with aspect-oriented
implementation techniques supporting crosscutting concerns. Based on earlier
work [1, 26], this paper contributes in summarizing our experiences with the
Di1sCo method regarding horizontal architecting and the alignment between
DisCo specifications and their implementations. Moreover, a mapping is dis-
cussed that implements DiSCo specifications in Hyper/J and AspectJ achieving
alignment between a symmetric specification and its symmetric and asymmetric
implementations. Provided with the mapping, we believe that the higher-level
methodology could serve well in guiding the design of aspect-oriented programs.

The rest of the paper is structured as follows. First, in Sect. 2, the idea of
structuring specifications using horizontal units that capture behavioral rather
than structural abstractions of the system is presented. Next, Sect.3 discusses
aligning the units of modularity at specification and implementation levels. In
Sect. 4 we introduce the D1SCO method, which utilizes such components as pri-
mary units of modularity. Section 5 then goes on to discuss the implementation of
a D1sCo specification using aspect-oriented implementation techniques. As con-
crete vehicles of implementation, we use Hyper/J and AspectJ. Sections6 and
7 provide an example on preserving DiSCO structures in aspect-oriented im-
plementations. Section 8 discusses related work, and finally, Sect. 9 draws some
conclusions.

2 Two Dimensions of Software Architecture

Describing architecture means construction of an abstract model that exhibits
certain kinds of intended properties. In the following we consider operational
models, which formalize executions as state sequences, as illustrated in Fig.1,
where all variables in the model have unique values in each state s;. In algorith-
mic models, these state sequences are finite, whereas in reactive models they are
nonterminating, in general.

2.1 Vertical Units

The algorithmic meaning of software, as formalized by Dijkstra in terms of pred-
icate transformers [12], has the desirable property that it can be composed in a
natural manner from the meanings of the components in a conventional archi-
tecture. To see what this means in terms of executions in operational models,

On Horizontal Specification Architectures 3

OROROROS

Fig. 1. Execution as a state sequence

P P\/ QV Q
: v

==

Fig. 2. A vertical slice V in an execution

consider state sequences that implement a required predicate transformation.
Independently of the design principles applied, a conventional architecture im-
poses a “vertical” slicing on these sequences, so that each unit is responsible for
certain subsequences of states. This is illustrated in Fig.2, where the satisfac-
tion of the precondition—postcondition pair (P, Q) for the whole sequence relies
on the assumption that a subsequence V', generated by an architectural unit,
satisfies its precondition—postcondition pair (Py, Qv).

More generally, an architecture that consists of conventional units imposes a
nested structure of such vertical slices on each state sequence. In the generation
of these sequences, the two basic operations on architectural units can be charac-
terized as sequential composition and invocation. The former concatenates state
sequences generated by component units; the latter embeds in longer sequences
some state sequences that are generated by a component unit. In both cases,
the resulting state sequences have subsequences for which the components are
responsible.

In current software engineering approaches, this view has been adopted as
the basis for designing behaviors of object-oriented systems, leading the fo-
cus to interface operations that are to be invoked, and to the associated local
precondition—postcondition pairs. The architectural dimension represented by
this kind of modularity will be called vertical in the following.

2.2 Horizontal Units

In contrast to precondition—postcondition pairs, the meaning of a system can
also be defined by how the values of its variables behave in state sequences.
In order to have modularity that is natural for such a reactive meaning, each
component must generate state sequences, but the associated set of variables is
then a subset of all variables. For each variable, the generation of its values is thus
assigned to some component. An architecture of reactive units therefore imposes

4 T. Aaltonen et al.

Fig. 3. A horizontal slice H in an execution

a “horizontal” slicing of state sequences, so that each unit H is responsible for
some subset Xz of variables in the state sequences generated by the system, as
illustrated in Fig. 3.

The two basic operations on horizontal units can now be characterized as
parallel composition and superposition. In terms of state sequences, the former
merges ones generated by the component units; the latter uses some state se-
quences that are generated by a component unit, embedding them in sequences
that involve a larger set of variables. In both cases, the resulting state se-
quences have projections (on subsets of variables) for which the components are
responsible.

In parallel composition of two units with variables X and Y, the units may
also have a common subcomponent with variables Z C X NY. In this case their
composition has the property that projecting the resulting state sequences on
Z yields state sequences generated by the common subunit. This is, of course,
essential for understanding such a subcomponent as a component within the
resulting horizontal architecture.

Since the variables that are associated with a horizontal unit may contain
variables for which different vertical modules would be responsible, the prop-
erties of a horizontal unit emphasize collaboration between vertical units and
relationships between their internal states. The two dimensions of architecture
are in some sense dual to each other. On the one hand, from the viewpoint
of vertical architecture, the behaviors generated by horizontal units represent
crosscutting concerns. From the horizontal viewpoint, on the other hand, ver-
tical units emerge incrementally when the horizontal units are constructed and
put together.

Superposition is typically used for refining specifications in a stepwise manner.
Even independent refinement steps are then taken in some order, which results
in irrelevant dependencies between the associated horizontal units. If such de-
pendencies are to be avoided, different branches of the specification should be
used whenever possible, i.e., superposing units on a common subcomponent.
Such branches typically address different concerns of the same system that are
composed using parallel composition at a later stage of the specification process.
It should be noted, however, that parallel composition is provided for purposes
of convenience, the same behavior could be specified by using only superposition.

On Horizontal Specification Architectures 5

In that case, different branches of the specification are seen to define a partial
order in which superposition steps should be applied when composing the units
(see discussion in [25]).

2.3 Architecting Horizontal Abstractions

To illustrate the nature of horizontal units, consider a simple modeling example
of an idealized doctors’ office, where ill patients are healed by doctors.! The
natural vertical units in such a model would model patients, doctors, and re-
ceptionists. Horizontal units, on the other hand, would model their cooperation
as specific projections of the total system, and the whole specification could be
built incrementally from these.

The specification process can start with a trivial model of the simple aspect
that people get ill, and ill patients eventually get well. The “illness bits” of the
patients are the only variables that are needed in this horizontal unit. Next, this
unit can be embedded in a larger model where a patient gets well only when
healed by a doctor. This extended model has events where a doctor starts in-
specting a patient, and participation of a doctor is added to the events where
a patient gets well. Finally, a further superposition step can add the aspect
that also receptionists are needed in the model, to organize patients to meet
doctors, and to make sure that they pay their bills. This aspect is truly cross-
cutting in the sense that it affects all the vertical units, i.e., patients, doctors, and
receptionists.

Each unit in this kind of a horizontal architecture is an abstraction of the
meaning of the total system. The first horizontal unit in this example is an
abstraction where all other behavioral properties have been abstracted away
except those that concern the “illness bits” of patients. In terms of temporal
logic of actions (TLA) [35], (the meaning of) the total system always implies
(the meaning of) each horizontal unit in it. As for variables, each component in
the horizontal structure focuses on some variables that will become embedded
in the vertical components in an eventual implementation. This can be related
with the observation of Parnas, Clements, and Weiss in [41], where such embed-
ded “secrets” are considered more important than the interfaces associated with
them in early phases of design.

This gives a formal basis for specifying a reactive system—i.e., for expressing
its intended meaning—incrementally in terms of operational abstractions that
can be formally reasoned about. Since it is unrealistic to formulate any complex
specification in one piece, this is a major advantage for using horizontal architec-
tures in the specification process. A classical example of using horizontal slices
is the separation of correctness and termination detection in a distributed com-
putation, with nodes forming the associated vertical structure [13]. This is also
the earliest known use of superposition in the literature—its close relationship
with aspect orientation was first reported in [28].

! This is an outline of a simplified version of an example that was used to illustrate
the ideas of Di1sCo in [31].

