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Editorial

Welcome to the second volume of Transactions on Aspect-Oriented Software
Development. The successful launch of the journal and publication of its first volume
in March 2006 has been followed by a steady stream of submissions as well as several
special issue proposals on topics ranging from Early Aspects and aspect interactions
through to aspect-oriented programming and middleware technologies. This volume
comprises two regular papers and six papers constituting a special section on AOP
Systems, Software and Middleware.

The first article “On Horizontal Specification Architectures and Their Aspect-
Oriented Implementations” by Aaltonen, Katara, Kurki-Suonio and Mikkonen proposes
the use of horizontal architectures to improve alignment between system requirements
and aspect-oriented implementations realizing those requirements. The authors’
approach builds on their earlier work on the DisCO method which utilizes the notion of
superpositions as a basis of aspect composition. The second article “A Framework
for Policy Driven Auto-Adaptive Systems Using Dynamic Framed Aspects” by
Greenwood and Blair synthesizes techniques such as event—condition—action rules and
parameterization with dynamic AOP to develop reusable aspects that can be woven at
run time. The goal of the authors’ work is to support auto-adaptive behaviour using such
reusable aspects. They present performance measurements as well as metrics-based
evaluation of their approach in this context.

The remaining six papers focus on various topics in AOP systems, software and
middleware. The guest editors, Yvonne Coady, Hans-Arno Jacobsen and Mario
Siidholt, provide an introduction to these in their editorial.

We wish to thank the editorial board for their continued guidance, commitment
and input on the policies of the journal, the choice of special issues as well as
associate-editorship of submitted articles. We also thank the guest editors, Yvonne
Coady, Hans-Arno Jacobsen and Mario Siidholt, for putting together the special
section on AOP systems, software and middleware. Thanks are also due to the
reviewers who volunteered time from their busy schedules to help realize this
volume. Most importantly, we wish to thank the authors who have submitted
papers to the journal so far, for their contributions maintain the high quality of
Transactions on AOSD.

The journal is committed to publishing work of the highest standard on all facets
of aspect-oriented software development techniques in the context of all phases of
the software life cycle, from requirements and design to implementation,
maintenance and evolution. The call for papers is open indefinitely and potential
authors can submit papers at any time to: taosd-submission@comp.lancs.ac.uk.
Detailed submission instructions are available at: http://www.springer.com/sgw/
cda/frontpage/0,,3-164-2-109318-0,00.html. Two more special issues on current
important topics, “Early Aspects” and “Aspects, Dependencies and Interactions”,
are in preparation. Calls for such special issues are publicized on relevant Internet
mailing lists, Web sites as well as conferences such as the Aspect-Oriented



VI Editorial

Software Development conference. We look forward to further high-quality
submissions from prospective authors and their publication in future volumes of
Transactions on AOSD.

Awais Rashid and Mehmet Aksit
Co-editors-in-chief
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On Horizontal Specification Architectures and
Their Aspect-Oriented Implementations

Timo Aaltonen, Mika Katara, Reino Kurki-Suonio, and Tommi Mikkonen

Institute of Software Systems
Tampere University of Technology
P.O. Box 553, 33101 Tampere, Finland
firstname.lastname@tut.fi

Abstract. In order to provide better alignment between conceptual re-
quirements and aspect-oriented implementations, specification methods
should enable the encapsulation of behavioral abstractions of systems. In
this paper we argue that horizontal architectures, consisting of such be-
havioral abstractions, can provide better separation of concerns than con-
ventional architectures, while supporting incremental development for
more common units of modularity such as classes. We base our arguments
on our experiences with the DisCo method, where behavioral abstrac-
tions are composed using the superposition principle, a technique closely
associated with aspect orientation. Moreover, we demonstrate how the
alignment between an abstract, horizontally architected specification (or
model) and its aspect-oriented implementation can be achieved. Map-
pings are discussed that implement symmetric DisCo specifications both
in Hyper/J, which enables symmetric separation of concerns, and in As-
pectJ that uses asymmetric structuring.

1 Introduction

Postobject programming (POP) mechanisms, like those developed in aspect-
oriented programming [15, 30], provide means to modularize crosscutting
concerns, which are in some sense orthogonal to conventional modularity. The
background of this paper is in the observation that the same objective has been
pursued also at the level of formal specifications of reactive systems, and that the
results of this research are relevant for the theoretical understanding of POP-
related architectures and of the associated specification and design methods.

Unlike conventional software modules, units of modularity that are suited for
a structured description of the intended logical meaning of a system can be un-
derstood as aspects in the sense of aspect-oriented programming. We call such
units horizontal in contrast to conventional vertical units of modularity, such as
classes and processes. While the vertical dimension remains dominant because
of the available implementation techniques, the horizontal dimension can pro-
vide better separation of concerns than the vertical one improving, for example,
traceability of requirements and conceptual understanding of the features of the
system.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD II, LNCS 4242, pp. 1-29, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 T. Aaltonen et al.

A somewhat similar dualism exists in aspect-oriented specification and pro-
gramming languages [18]. Asymmetric approches, such as AspectJ (48], separate
between a conventionally structured base implementation and aspects that cut
across the units of the base implementation, such as classes. In contrast, no such
separation exists in symmetric approaches, such as Hyper/J [39], that consider
systems to be composed of aspects, or slices, that potentially cut across each
other.

Unfortunately, horizontal units of modularity in specification do not always
align with conventional implementation techniques that rely on vertical units of
architecture. However, a better alignment can be achieved with aspect-oriented
implementation techniques supporting crosscutting concerns. Based on earlier
work [1, 26], this paper contributes in summarizing our experiences with the
Di1sCo method regarding horizontal architecting and the alignment between
DisCo specifications and their implementations. Moreover, a mapping is dis-
cussed that implements DiSCo specifications in Hyper/J and AspectJ achieving
alignment between a symmetric specification and its symmetric and asymmetric
implementations. Provided with the mapping, we believe that the higher-level
methodology could serve well in guiding the design of aspect-oriented programs.

The rest of the paper is structured as follows. First, in Sect. 2, the idea of
structuring specifications using horizontal units that capture behavioral rather
than structural abstractions of the system is presented. Next, Sect.3 discusses
aligning the units of modularity at specification and implementation levels. In
Sect. 4 we introduce the D1SCO method, which utilizes such components as pri-
mary units of modularity. Section 5 then goes on to discuss the implementation of
a D1sCo specification using aspect-oriented implementation techniques. As con-
crete vehicles of implementation, we use Hyper/J and AspectJ. Sections6 and
7 provide an example on preserving DiSCO structures in aspect-oriented im-
plementations. Section 8 discusses related work, and finally, Sect. 9 draws some
conclusions.

2 Two Dimensions of Software Architecture

Describing architecture means construction of an abstract model that exhibits
certain kinds of intended properties. In the following we consider operational
models, which formalize executions as state sequences, as illustrated in Fig.1,
where all variables in the model have unique values in each state s;. In algorith-
mic models, these state sequences are finite, whereas in reactive models they are
nonterminating, in general.

2.1 Vertical Units

The algorithmic meaning of software, as formalized by Dijkstra in terms of pred-
icate transformers [12], has the desirable property that it can be composed in a
natural manner from the meanings of the components in a conventional archi-
tecture. To see what this means in terms of executions in operational models,
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Fig. 1. Execution as a state sequence

P P\/ QV Q
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Fig. 2. A vertical slice V in an execution

consider state sequences that implement a required predicate transformation.
Independently of the design principles applied, a conventional architecture im-
poses a “vertical” slicing on these sequences, so that each unit is responsible for
certain subsequences of states. This is illustrated in Fig.2, where the satisfac-
tion of the precondition—postcondition pair (P, Q) for the whole sequence relies
on the assumption that a subsequence V', generated by an architectural unit,
satisfies its precondition—postcondition pair (Py, Qv ).

More generally, an architecture that consists of conventional units imposes a
nested structure of such vertical slices on each state sequence. In the generation
of these sequences, the two basic operations on architectural units can be charac-
terized as sequential composition and invocation. The former concatenates state
sequences generated by component units; the latter embeds in longer sequences
some state sequences that are generated by a component unit. In both cases,
the resulting state sequences have subsequences for which the components are
responsible.

In current software engineering approaches, this view has been adopted as
the basis for designing behaviors of object-oriented systems, leading the fo-
cus to interface operations that are to be invoked, and to the associated local
precondition—postcondition pairs. The architectural dimension represented by
this kind of modularity will be called vertical in the following.

2.2 Horizontal Units

In contrast to precondition—postcondition pairs, the meaning of a system can
also be defined by how the values of its variables behave in state sequences.
In order to have modularity that is natural for such a reactive meaning, each
component must generate state sequences, but the associated set of variables is
then a subset of all variables. For each variable, the generation of its values is thus
assigned to some component. An architecture of reactive units therefore imposes
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Fig. 3. A horizontal slice H in an execution

a “horizontal” slicing of state sequences, so that each unit H is responsible for
some subset Xz of variables in the state sequences generated by the system, as
illustrated in Fig. 3.

The two basic operations on horizontal units can now be characterized as
parallel composition and superposition. In terms of state sequences, the former
merges ones generated by the component units; the latter uses some state se-
quences that are generated by a component unit, embedding them in sequences
that involve a larger set of variables. In both cases, the resulting state se-
quences have projections (on subsets of variables) for which the components are
responsible.

In parallel composition of two units with variables X and Y, the units may
also have a common subcomponent with variables Z C X NY. In this case their
composition has the property that projecting the resulting state sequences on
Z yields state sequences generated by the common subunit. This is, of course,
essential for understanding such a subcomponent as a component within the
resulting horizontal architecture.

Since the variables that are associated with a horizontal unit may contain
variables for which different vertical modules would be responsible, the prop-
erties of a horizontal unit emphasize collaboration between vertical units and
relationships between their internal states. The two dimensions of architecture
are in some sense dual to each other. On the one hand, from the viewpoint
of vertical architecture, the behaviors generated by horizontal units represent
crosscutting concerns. From the horizontal viewpoint, on the other hand, ver-
tical units emerge incrementally when the horizontal units are constructed and
put together.

Superposition is typically used for refining specifications in a stepwise manner.
Even independent refinement steps are then taken in some order, which results
in irrelevant dependencies between the associated horizontal units. If such de-
pendencies are to be avoided, different branches of the specification should be
used whenever possible, i.e., superposing units on a common subcomponent.
Such branches typically address different concerns of the same system that are
composed using parallel composition at a later stage of the specification process.
It should be noted, however, that parallel composition is provided for purposes
of convenience, the same behavior could be specified by using only superposition.
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In that case, different branches of the specification are seen to define a partial
order in which superposition steps should be applied when composing the units
(see discussion in [25]).

2.3 Architecting Horizontal Abstractions

To illustrate the nature of horizontal units, consider a simple modeling example
of an idealized doctors’ office, where ill patients are healed by doctors.! The
natural vertical units in such a model would model patients, doctors, and re-
ceptionists. Horizontal units, on the other hand, would model their cooperation
as specific projections of the total system, and the whole specification could be
built incrementally from these.

The specification process can start with a trivial model of the simple aspect
that people get ill, and ill patients eventually get well. The “illness bits” of the
patients are the only variables that are needed in this horizontal unit. Next, this
unit can be embedded in a larger model where a patient gets well only when
healed by a doctor. This extended model has events where a doctor starts in-
specting a patient, and participation of a doctor is added to the events where
a patient gets well. Finally, a further superposition step can add the aspect
that also receptionists are needed in the model, to organize patients to meet
doctors, and to make sure that they pay their bills. This aspect is truly cross-
cutting in the sense that it affects all the vertical units, i.e., patients, doctors, and
receptionists.

Each unit in this kind of a horizontal architecture is an abstraction of the
meaning of the total system. The first horizontal unit in this example is an
abstraction where all other behavioral properties have been abstracted away
except those that concern the “illness bits” of patients. In terms of temporal
logic of actions (TLA) [35], (the meaning of) the total system always implies
(the meaning of) each horizontal unit in it. As for variables, each component in
the horizontal structure focuses on some variables that will become embedded
in the vertical components in an eventual implementation. This can be related
with the observation of Parnas, Clements, and Weiss in [41], where such embed-
ded “secrets” are considered more important than the interfaces associated with
them in early phases of design.

This gives a formal basis for specifying a reactive system—i.e., for expressing
its intended meaning—incrementally in terms of operational abstractions that
can be formally reasoned about. Since it is unrealistic to formulate any complex
specification in one piece, this is a major advantage for using horizontal architec-
tures in the specification process. A classical example of using horizontal slices
is the separation of correctness and termination detection in a distributed com-
putation, with nodes forming the associated vertical structure [13]. This is also
the earliest known use of superposition in the literature—its close relationship
with aspect orientation was first reported in [28].

! This is an outline of a simplified version of an example that was used to illustrate
the ideas of Di1sCo in [31].



