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PREFACE

“Of all the systems in statistical mechanics on which exact calculations
have been performed, the two-dimensional Ising model is not only the
most thoroughly investigated; it is also the richest and most profound.
In 1925, Ising introduced the statistical system which now bears his name
and studied some of its properties in one dimension. Although the
generalization of Ising’s system to higher dimensions was immediately
obvious, it was not until 1941 that a quantitative statement about the
phase transition in the two-dimensional case was made when Kramers
and Wannier and also Montroll computed the Curie (or critical) tempera-
ture. However, the most remarkable development was made in 1944 when
Onsager was able to compute the thermodynamic properties of the two-
dimensional lattice in the absence of a magnetic field. Onsager’s approach
was greatly simplified by Kaufman in 1949, and in a companion paper
Kaufman and Onsager studied spih correlation functions. The spon-
taneous magnetization was first published, without derivation, by
Onsager in 1949, and the first derivation was given by Yang in 1952. For
the next decade no new result of fundamental significance was derived,
but a great deal was accomplished in simplifying the mathematics of
these pioneering papers. The work of Kac, Kasteleyn, Montroll, Potts,
Szeg6, and Ward, among others, has been especially significant.

The methods of Onsager, Kaufman, and Yang, although very beauti-
ful and powerful, are also extremely complicated. Thus, the two-dimen-
sional Ising model has acquired a notorious reputation for difficulty
whereas, in fact, the simplified methods developed by 1963 have reduced
the analysis to the point where it may be readily understood. Since then
we have actively used these methods as the basis for computing many
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" more quantities of physical interest. Our original concern was with the
spin correlation functions of the two-dimensional Ising model. However,
it soon became apparent that much more could be studied. In particular,
we found that the Ising model has properties which exhibit a hysteresis
behavior. Moreover, we discovered that exact results can be obtained
even in a much more complicated situation where the interaction between
the spins is allowed to be a random variable. On the basis of these results,
a quantitative study of the influence of impurities on phase transitions
has been carried out. This influence is large and has experimental con-
sequences that have yet to be fully explored.

Since the two-dimensional Ising model forms the basis of much of our
theoretical understanding of phase transitions, it is unfortunate that these
recent developments have not been easily accessible to the general com-
munity of physicists. Perhaps as a result of its notoriety, most physicists
tend to think of the two-dimensional Ising model as a closed problem
that was completely solved by Onsager, Kaufman, and Yang. Moreover,
once a physicist does become aware of the wide variety of open questions
there is no convenient place where he can find the known facts collected
together and explained in an organized fashion. Furthermore, even if one
has the patience to trace the references back to Kasteleyn’s paper of 1961,
the usual result is a feeling of confusion. This confusion arises not out of
any errors in the published work, but out of the fact that in journal
articles many things must be omitted owing to lack of space. Therefore,
points that can be straightened out and rigorously shown to cause no
problems are often treated very briefly. The careful reader therefore has
questions that he must resolve for himself and the resolutions are
frequently quite time consuming.

The study of the two-dimensional Ising model requires the use of
mathematics from such apparently widely separated areas as the theory
of determinants and integral equations. Few physicists are knowledgeable
in all these branches of mathematics. Therefore, a formula that may have
been well known to a mathematician of 100 years ago may be totally
unknown to a physicist of today, It is quite impossible to discuss such a
formula in a journal article. One must call it *“ well known,” give a refer-
ence, and go on. But the reference is often useless because, while correct,
it usually is so arranged that the reader must spend an inordinate amount
of time in mastering a lot of notation which is mostly superfluous if he
wants to derive only one particular formula. For example, in our study
of Ising-model spin correlation functions we make extensive use of the
theory of Wiener-Hopf sum equations. Except as an afterthought to the
theory of Wiener-Hopf integral equations, these sum equations are rarely
discussed in the literature. This circumstance often leads one to believe
that the sum equations are harder than the integral equations. In fact
they are simpler.
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For these reasons we feel that it is at this time most desirable to write
a book on the two-dimensional Ising model that has the following three
goals: '

(1) It should be completely up to date and be crystal clear in its state-
ment of what is known and, more important, what is as yet unknown.

(2) It should discuss all topics in complete detail. No significant point
should be dismissed with the casual remark “it can be shown.”

(3) It should strive to be self-contained. All mathematical statements
that are not known by the average graduate student in physics should be
proved.

The present book, which sets forth the theory of the two-dimensional
Ising model with nearest-neighbor interactions as it has developed
through the end of 1969, is our attempt at meeting these three goals. In
particular, we have tried to make this book complete in such a manner
that the physicist can read it without consulting any additional source.
To this end we have assumed that the reader knows no statistical me-
chanics at all and have included at the beginning a chapter that develops
all the statistical mechanics needed for the entire book. Furthermore,
though we do not feel justified in including a chapter on special functions,
we have not assumed a familiarity with mathematics beyond a basic
understanding of complex-variable theory. N

For the sake of readability we abandon altogether any attempt at
preserving the historical development of the Ising model and, in fact, give
no exposition whatsoever of the original work of Onsager, Kaufman,
and Yang. The development we follow instead should be obvious from
the chapter headings in the table of contents. Only three points deserve
special attention. First, the interrelations between the chapters are shown
in Fig. 0.1. Secondly, we have chosen to give a thorough treatment of

Fig. 0.1. The interrelations of the chapters.
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boundary effects before any study is made of bulk spin correlation func-
tions. We have made this choice because the calculations for the boundary
are much easier to understand and are more complete than the corre-
sponding calculations for the bulk. Lastly, we wish to call the reader’s
attention to Chapter IV. This is the most crucial chapter in the book
because everything that is done later depends on it. For this reason, in
Chaptet IV we attempt to give a complete and detailed discussion of all
the fine’ points. However, several of these details have to do only with
straightening out certain + and — signs associated with the various
boundary conditions that may be imposed on the lattice. Accordingly,
if the reader is willing to accept the conclusions of Sections 4 and 5 of
Chapter IV, he may omit the derivations without impairing his ability to
read the rest of the book. In fact, we will suggest that the book may be
profitably read with the omission of Chapter IV altogether, even though
this is the most crucial chapter, because the results of this chapter are much
more easily stated and used than they are proved. Moreover, the several
open questions we will arrive at already incorporate the combinatorics of
Chapter IV in their formulation. Therefore, it is perfectly possible to
appreciate the current status of the physics of the Ising model without a full
understanding of the combinatorial problem involved. Indeed, this was
precisely the route that we took ourselves when we first entered the field.

If the authors of any scientific book are to be fair to the reader, it is as
important for them to indicate what is omitted as to explain what is
covered. Not a book, but an encyclopedia, results if an effort is made 10
include all related topics, related related topics, and so on. For this book
we mention the conspicuous omission of the following five related topics:
(1) high- and low-temperature expansions, (2) Padé approximants, (3) the
circle theorem of Lee and Yang, (4) decorated lattices, and (5) theorems
that prove the existence of limits or of analyticity without actually
computing the quantity involved.

One of us (TTW) would like to express special gratitude to Professor
Ronold W. P. King and Professor Elliott W. Montroll. Because of the
insictence of Professor King that each student must be allowed to decide
his own interest and pick his own topic, it has been a most rewarding
experience to write a doctorial dissertation under his guidance. Further-
more, without his continual encouragement and help in every respect
of this present book, its completion would be impossible. Professor
Montroll taught us the Pfaffian approach to the two-dimensional Ising
model. The influence of his two papers, ““Lattice Statistics”’ (Chapter 1V,
Applied Combinatorial Mathematics, ed. E. F. Beckenbach, Wiley, New
York, 1964) and *“Correlations and Spontaneous Magnetization of the
Two-Dimensional Ising Model” (with R. B. Potts and J. C. Ward,
J. Math. Phys. 4, 308, 1963), is particularly evident in Chapter IV and
Chapter VIII of this book.
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CHAPTER I
Introduction

1. INTRODUCTION

Statistical mechanics is an old and venerable branch of physics which
has received the attention of many physicists from the time of Gibbs.
Since then it has developed in several directions so that at present it is
possible to distinguish at least three different theoretical approaches to
the subject: (1) the foundational approach, which is concerned with
establishing the general properties of, and proving existence theorems for,
statistical mechanical systems by rigorous mathematical means, (2) the
phenomenological approach, which is concerned with -correlating and
quantitatively explaining the results of experiments by any available
method, and (3) the model-building approach, which attempts to gain
insight into practical situations by studying simple models in which at
least some physically interesting quantities may be exactly computed.
Each of these approaches has made such valuable contributions to our
understanding of statistical mechanics that it is neither feasible nor
desirable to separate them completely. However, because each approach
has developed such a large body of literature, it is likewise not possible
to give an adequate treatment of all of them in a single book. Therefore,
while we will attempt to make this book self-contained by giving a brief
discussion of the foundation of statistical mechanics, and while we will
attempt to place the book in a somewhat broader context by making
contact with the existing experimental situation, we will concentrate our
efforts on the study of certain solvable models.

The number of exactly solvable problems in a field depends on the
complexity of the subject. For example, there are innumerable solvable
problems in classical mechanics, whereas, at the other extreme, very few
problems in relativistic quantum field theory have ever been exactly
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solved. The scarcity of solvable models in both statistical mechanics and
relativistic quantum field theory is due basically to the fact that, in a
system with a very large number of particles, each particle may indirectly
interact with an enormous number of others even if the fundamental

" -interaction is two-body and of short range. However, it is the purpose of

statistical mechanics to study systems with a large number of particles,
and the phenomena of greatest interest are precisely those which are not
present in the classical or quantum mechanics of a small number of
particles. Therefore, a criterion for the usefulness of any model in statisti-
cal mechanics is its capability of giving us insight into the new phenomena
characteristic of a large number of particles.

The most characteristic feature of statistical mechanical systems is the
existence of phase transitions. Surely the most familiar phase transition is
either the condensation of steam into water or the freezing of water into
ice. Only slightly less familiar is the ferromagnetic phase transition that
takes place at the Curie temperature, which, as an example, is roughly
1043°K for iron. Of the several existing models which exhibit a phase
transition, the most famous is the Ising model. In three dimensions the
model is so complicated that no exact computation has ever been made,
while in one dimension the Ising model does not undergo a phase transi-
tion. However, it is one of the most beautiful discoveries of twentieth-
century physics that in two dimensions the Ising model not only has a
ferromagnetic phase transition but also has very many physical properties
which may be exactly computed. Indeed, despite the restriction on
dimensionality, the two-dimensional Ising model exhibits all of the
phenomena peculiar to magnetic systems near the Curie temperature.
For that reason, the two-dimensional Ising model forms the basis of
almost all our theoretical understanding of the phase transition to the
ferromagnetic state.

2. THE ISING MODEL

The model introduced by Ising? consists of a lattice of “spin” variables
o,, which may take on only the values +1 and —1. Any two of these
““spins” have a mutual interaction energy

- E(a’ a')a,,a,,-.

The meaning of (2.1) is as follows: the mutual interaction energy is
— E(e, @) when o, and o,. are both +1 or both —1, but is + E(e, ') in
the two cases where o, = +1, 0, = —1 and o, = -1, o, = +1. In

1. E. Ising, Z. Physik 31, 253 (1925). Some people prefer to refer to this as the
Lenz-Ising model because Lenz introduced the model in Physik. Z. 21, 613 (1920).
However, Lenz never computed any of the model’s properties. Therefore, we will
follow the practice of Onsager, Kaufman, and Yang and refer to the model by
Ising’s name alone.

2.1y
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addition, a spin may interact with an external magnetic field H with an
energy

— Ho,.

Like (2.1), (2.2) means that the interaction energy is — H or + H accord-
ing as the spin o, is +1 or — 1. Throughout this book we will consider
only the case where E(e, ') vanishes unless the locations « and o« are
nearest neighbors on the lattice. Furthermore, we will restrict ourselves to
the square lattice, where all the spins o, are situated at the intersections of
a square grid. These two restrictions are of quite different natures and
deserve comment.

In two dimensions, the restriction to nearest-neighbor interactions has
proved essential if we wish to perform exact calculations valid for all
temperatures. In one dimension, however, the same remark does not
apply, and, in fact, explicit computations on the linear Ising chain have
been carried out with interactions which include several neighbors. More
important, it has been shown by Dyson 2 that, whereas no phase transition
can exist if all interactions are finite and of finite range, a phase transition
does exist if the interactions are of infinite range and decrease sufficiently
slowly as the separation between the spins becomes large. At present
only the existence of this phase transition has been established, but none
of its properties have been computed. This one-dimensional work is
extremely interesting but does not fall within the scope of this book. It
does, however, lead us to believe that in two dimensions a generalization
of the interaction to include more than nearest neighbors will change the
nature of the phase transition qualitatively only if the range of interaction
is infinite. Because dipole-dipole forces are of long range, this is physi-
cally an interesting topic, but unfortunately nothing is exactly known at
present. '

There are numerous two-dimensional lattices other than the square
lattice. For example, the triangular, hexagonal, and decorated lattices
have all been considered. However, the square lattice is the one which has
been most thoroughly studied. Furthermore, the existing work on all of
these lattices has been performed by methods quite closely related to
those we will develop for the square lattice. Also, with the exception of
decorated lattices, most of the physical properties of these lattices reveal
no new phenomena not already exhibited by the square lattice. Con-
sequently, for reasons of concreteness and convenience, we will, with one
exception in Chapter VIII, not consider these lattices in this book.

With these restrictions, we may now write the total energy of the two-
dimensional Ising model as

¢ = —Z Z {E1(, K)0jx05,k41 + Ea(J, K)oy k0541, + Hogyl,
7 %

2. F. Dyson, Communications in Math. Physics 12, 91, 212 (1969).

2.2)

(2.3)
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where the first subscript of o labels the rows and the second subscript
labels the columns of the square lattice. However, further simplifying
assumptions on E,(j, k) and E,(j, k) are still needed if we wish to obtain
explicit results. Throughout the first thirteen chapters of this book we
will consider the case first studied by Onsager,® namely, the case where
E\(j, k) does not depend on j and k and where E,(j, k) also does not
depend on j and k. We will refer to the square lattice with these conditions
on E; and E, as Onsager’s lattice and write its total energy explicitly as

& =—E E]: kz 05k05k+1 — Es Z kz Os,k0f+1,k — HIZ ;Z Oy, ke

Onsager’s lattice has the property that (ignoring for the moment possible
complications at the boundary) each site is equivalent to every other site.
In the last two chapters of this book, the restriction to Onsager’s lattice is
relaxed. Instead, we study lattices where E,(J, k) is allowed to depend on
j but not k although E;(j, k) is still independent of both j and k.

Our definition of the Ising model is still incomplete, because we have
not yet specified the situation at the boundary. In this book, several
different choices appear, depending on the physical quantity of interest.

It must be pointed out that the Ising model is a useful model for several
physical phenomena other than ferromagnetism. For example, Lee and
Yang* have used it to study the liquid-gas transition, and it has also
proved to be of great value in understanding the order-disorder transition
of alloys such as B-brass. However, for the sake of concreteness of
interpretation and because the considerations of the last three chapters
do not make physical sense with any other interpretation, we will un-
abashedly think of the Ising model as a ferromagnet.

3. LITERATURE

We conclude this chapter with a chronological list of the literature on
the two-dimensional Ising model that is referred to in the course of this
book.
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