

My26
1789

TSI 3 -¢3

| 9160483
Lecture Notes in
Computer Science

Edited by G. Goos and J. EEa‘rtmanis |
. b
=

364

J. Demetrovics B. Thalheim (Eds)

* -
mff/

MFDBS 89

~

2nd Symposium on

Mathematical Fundamentals of Database Systems
T/isegréd, Hungary, June 26—30, 1989

Proceedings ot

E9

. Q’J‘

‘ P D B
SpringerVerl-
Berlin Heidell

Editorial Board s
D. Barstow W. Brauer P. Brinch Hansen D. Gries: D.gucm e

C.Moler A.Pnueli G. Seegmuller J. Stoer N. thh &

‘ WmcEduogs' - _) BT A :
Jnos Demetrovics o T T O
Camputer and Automation Institute
Hungarian Academy of Sciences

. PO. Box 63, H-1502 Budapest, Hungary

Bernhard Thaflheim
Kuwait University, Department of Mathematics

- P.O. Box 5969, 13060 Kuwait

=

CR Subject Classification (1987): F.4.1, G.2.1, H.2
. . |SBN 3-540-51251-9 SpringerVerlag Berlin Heidelberg New York :
‘ ISBN 0-387- 512519 Springer-Verlag New York Berlin Hevdelberg

. \'Thlaworkmaubjectwoopyrght All rights are reserved, M\emerthewhdearpmdﬂbm o
+*is poncerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
proadcasmg.roproducnononmmoﬁlmsormoﬂ\erways and storage in data banks. Duplication
:.thnsmumwmpwtsmemofmmpemmduwerﬂwprowmneofﬁnmcw
~ber @ 1ORE I it 41985, andaoopyngwfumuo(alwmbe
"~ man Copyright Law. .

P » 4 |

Preface

Within the last 20 years the database area has enriched computer science with a set of
important practical and deep theoretical results. The main topics in modern database
theory are nowadays: theoretical fundamentals of database models (dependency theory,
design theory, extensions of the relational, the entity-relationship and semantic modsels),
extended database semantics (complex data objects, databases and logic, extended data
semantics and data types), theoretical fundamentals for extended architectures and sys-
tem support (transaction models, concurrency, data distribution, data access, query, in-
tegrity, security). ,

A great deal of work has been done, and there is a need for intensive exchange of ex-
perience. Therefore, the MFDBS symposia are organized every odd year. The first one
was held in Dresden in 1987, the second one will be held in Visegrad, Hungary, June 26-
30, 1989.

This volume is a collection of the most important contributions of the Visegrad Sym-
posium. The papers selected from more than 100 submissions, originating from 23

_countries in 4 continents, can be divided roughly into the following sections:

Theoretical Fundamentals of Relational Databases;
Logical Foundations and Databases;

Data Modelling;

Database Design;

Deductive Databases;

Transaction Management and Security;
Concurrency Control and Distributed Databases.

For their careful evaluation of the submitted papers we should like to express our sincere
thanks to the members of the program committee, S. Abiteboul, G. Ausiello, A. Benczur,
J. Biskup, S. Ceri, G. Katona, R. Kirkova, J. Paredaens, V. Pasichnik, A. Riha, Y. Sagiv,
J.W. Schmidt, A. Stogniy, M.Y. Vardi, and also to the other reviewers, K Bahler, F. Bry, -
H.H. Briggemann, B. Convent, R. Kemp, U.W. Lipeck, R. Manthey, u. Rasch H. Stiefel-
ing, and H. Thiele.

Finally we should like to thank Springer-Verlag for the quick pubhcatlon and the Hun-
‘garian National Foundation for Scientific Research, Grant No. 1066 for the partial flnanénal
support of the Symposium.

Budapest, Kuwait J. Démetrovics and B. Thalheim
March 1889 Co-Chairmen

Table of Contents

Selective refutation of integrity constraints in deductive databases...............c.ccocerrureruenne 1
P.Asirelli, C.Billi, P.Inverardi
Approaches to updates over Weak iNStANCES...............ccecveerererermecericreessnesssesessasessessssssnes 12
P.Atzeni, R.Torlone
Index selection in relational AAtabaSes...................c.eeeueeereeeeremneserrerseseseeenessesssessssssessessens 24
E.Barcucci, A.Chiuderi, R.Pinzani, M.C.Vern
.Towards a schema design methodology for deductive databases.....................c..e.euuses 37
- J.Biskup, B.Convent
Shared abstract data types: An algebraic methodology for tﬁeir specification............... 53
A.Bondavalli, N.De Francesco, D.Latella, G.Vaglini y
A
Specifying closed world assumptions for I0gic databases......... v veeeeeesvssosseeesesessssni 68.
S.Brass, U.W.Lipeck
Interaction of authorities and acquaintances in the DORIS privacy model of data........ 85
H.H.Briggemann :
Logical rewritings for improving the evaluation of quantified queries.........ccceceeeeueenee 100
F.Bry -
Mathematical foundations of semantic networks theory................occoeveeeermerrereoeen 117
M.Burgin, V.Gladun '
Functiohal dependencies and the semilattice of closed classes................oocvevvennn. 136
J.Demetrovics, L.O.Libkin, I.B.Muchnik
An extended view on data base conceptual design...................eveuereereereererereeeseressene 148
M.D.Draghici
Modeling planning ProbIBMS............c.ccueurrueurvereeceeeeeeeeeeeeeeeessssssesssseessessieses s ses et 172
A.E.Eiben ‘
On the interaction between transitive closure and functional dependencies............... 187
G.Gottlob, M.Schrefl, M.Stumptner ’
A strategy for executing COMPIEX QUEHES................eeeeeeeereeeeeesreeeeeseeeeeoeoeeeoeeoeee oo 207
~ E.Grazzini, F.Pippolini ?

Muttiple task selection protocol in a distributed problem solving network.................... 222
T.Gyires .

Vi

Equivalent schemes in semantic, nested relational, and relational database

INIOTIBISo.eeeeeeeeeee e eeeeaeetessiesssssasaesesss e s et seae Rt se R s SRS SRR SRS R SRR AR SRS SRR s s 237
"A.Heuer

Covers for functional iNAEPENAENCIEScouuimuinrinieiiirinin s e 254

J.M.Janas

Restructuring and dependencies in databases...............cceuuvuirunninniiniioiniinsi i 269

E.A.Komissartschik

RTL. - A relation and table language for statistical databases...............cccocoeeernnncncnncnn. 285

L.Lakhal, R.Cicchetti, S.Miranda

Integration of functions in the fixpoint semantics of rule-based systems....................... 301
E.Lambrichts, P.Nees, J.Paredaens, P.Peelman, L.Tanca

Locking policies and predeclared transactions............c..oeecevveeeninionininnnienns deenseesnesie 317
G.Lausen, E.Soisalon-Soininen

Means for management of relational fuzzy data bases - way to merging of
systems of data bases and knowledge basescccceeeivenennenccccnisn e 337
T.A.Malyuta, V.V.Pasichnik, A.A.Stogniy

A specification language for static, dynamic and deontic integrity constraints............ 347
J.~J.Meyer, H.Weigand, R.Wieringa *

~ Blocks and projections’ synthesis in relational databases..................c.ccccoeerreerrreeveen, 367
L.A.Tenenbaum
The higher-order entity-relationship model and (DB)2 ... ik 382
B.Thalheim
Goal-oriented concurrency COMION.ecsssesssssssssonssssasbissssisistbnseesbesssssisssessimasensscsontibuasinssiai 398

V.Vianu, G.Vossen

Transitive closure and the LOGA*-strategy for its efficient evaluation.......................... 415
- W.Yan, N.Mattos

Selective Refutation of Integrity Constraints in
Deductive Databases

P. Asirelli, C. Billi, P. Inverardi

Istituto di Elaborazione della Informazione - CNR
via S. Maria n. 46
1-56100 Pisa

1. INTRODUCTION

In the last ten years Logic Programming has been a very active and successful area of research. One effect
of that success is that it has made people aware of the advantages of logic, both as a new approach
(declarative) to solve old problems and as a new language philosophy to build tools to be integrated with
existing applications. One of the interesting area of applications of logic, has been to deductive databases
and query languages for databases such as Datalog programs.

This paper falls into the area of deductive databases seen as a Horn clause logic program [Lloyd 87]. With
this approach integrity constraints are considered as first order formulas that have to be logical
consequences of suitable models of the given program. Updates to the database foresee for integrity
checking that can be very inefficient. : '

The aim of the paper is to present an approach to integrity checking that is based on the assumption that, if
the database was consistent with respect to the integrity constraints (i.e. its model satisfied the integrity
constraint formulas) before the update, then, any possible inconsistency after the update is due to the
update itself. One of the approach in the literature is to verify the validity of the Integrity formulas on the
new database by SLD-resolution. This can be very inefficient if it has to be done frequently, while such an
inefficency could be decreased if, in the SLD-resolution one could consider only resolution steps that are
involved with the updates. That is, in terms of SLD-tree, we want to consider only those branches where
the inserted/deleted clause appear at some stage, while not considering the others that are assumed to
remain unchanged after the update.

We are going to present a deductive strategy to compute, for a given program P, a given goal G and a
clause C, the answers to P U {G}) that are obtained by using the clause C. C is said to be the “driving”
clause. We call this method “Driven Method” denoted from now on by DM.

The method is based on the SLD-resolution with a new defined Selection Rule.

2. Introduction to the DM method and definitions

2.1 Overview of the DM method

Given a definite program P, i.e. a set of Horn clauses, a definite goal G, i.e. G: «Aj,...,A where each
Aj is an atom, and a clause C in P, the method is a deductive strategy to build a refutation-tree that has G at

the root and has the following properties:

- Soundness: Every answer is correct: i.e. given a refutation in the tree with answer © then
V(A1,...,Ap)0 is a logical consequence of P.

- Completeness : Let 6 be an answer for P U {G}, computed by the SLD procedure using C as “input”
clause (driving clausc)‘, then there exists an answer 6 computed by the “driven” method which is equivalent
to 6, i.e. GO is a variant of G. Such substitutions are said to be dependent on C.

- Every DM-computed answer uses clause C as “input” clause.

Thus, since we want to compute only the answers to P U {G} that have a refutation containing, among the
“input” clauses, the “driving” clause C, it is sufficient to inspect the tree defined by the DM-method.

The DM-method, uses an “ad hoc” computation rule that selects an atom Aj from the current goal, where A;
has to be resolved using information:

i) about the dependency relation among predicates in P, and
ii) about the “state” of the derivation.

To be more precise, since we want to build those refutations on the tree that use clause C as “input” clause,
we select those atoms that can be directly resolved by C, or else¢ atoms that, at some stage, generate
subgoals that can be directly resolved by C. This strategy is applied until the clause C is used in the
resolution, after that, the goal obtained at that stage becomes the goal of an SLD derivation procedure that
uses a strategy whatsoever, e.g. the PROLOG's Leftmost Selection Rule.

In the following, in order to outline the method, we describe it for definite programs and for definite goals,
while afterward we will extend it to normal goals, i.e. goals in which negative literals can occur, when
discussing its application to an integrity constraint checking procedure.

Let us now consider the derivation tree that can be built by the above approach. The successful branches,
whose associated substitutions are exactly those that can be obtained by using the clause C in the

derivation, can be divided into two distinct phases:

1. - G=Gg, Gy, ..., Gj where each G;j (0<jsi) is obtained by resolving in G;-1 an atom according to the
DM-selection rule.

2. - Gj+1,--» [1 where Gj, is the resolvent of G; and C, and C is not used as “inpht” derivation clause
in Gg , Gy, ..., Gj.

2.2 Definitions

Let us give few definitions that are needed to define the method more precisely. For all those definitions
which are not explicitly stated here we refer to [Lloyd 87].

Def. 1 Let P be a definite program and q a predicate symbol of P. The following sets can be inductively
defined:

K3
A}

SUCC 0 (q) = { r 13 C € P such that C= q(tj,...,t5) & Lq,..., T (v_l,..‘.,vm),...,Lk, and r#q}

SUCC 1 () = (113 C e P such that C= 5(tj,....tn) & Lysecr T (Viyeers¥Vm)orosLic » s € SUCC i () and
1 r#q, ¢ SUCCI (q) 0<j<i}

SUCC (q) = Uj»0 SUCC i (g)

S.ince, SUCC (q) is contained in the set of predicates of P, it can be effectively computed in a finite
number of steps, we need only to stop when a SUCC J (q) is found such that

SUCC (g) = SUCC -1 (q)

Using SUCC (q) it is possible to give sufficient conditions to obtain the desired refutations: that is, all
those refutations that use, among the input clauses, clause C. Such refutations are'said “driven by C”.

Def. 2 Let C = A «A{,...,Ap such that A=p(ty,..., ty): il
head(C) = A; Body(C) = At,...,Ap ; predicate (A) = p.

Prop. 1. Let P be a definite program, C a clause of P and G = «A a definite goal.
If predicate(head(C))e SUCC{predicate(A)) every SLD derivation starting from G in P does not contain C.

proof: Straightforward from definition of SUCC.

Thus, given a goal, if we want to select all those derivations that use C as input clanse it is necessary to

expand all those atoms, Aj, in the goal such that predicate(head(C)) € SUCC(predicate(A;)). If such an
atom'does not'exist in G the derivotion can fail because, from the above proposition, we know that no
“interesting” derivations are obtainable from that goai.

Thus the idea of the algorithm is that of forcing, by means of an appropriate computation rule, the use of
such atoms until C does appear as ir.put clanse, afterward the derivation may proceed in the usual way (i.e.
by using the standard leftmost computation rule).

Def. 3. Let Gbe a goél and o, 0 two substitutions. ©, 6 are equivalent iff Go, GO are variants.

Def. 4 (Driven Selection Rule, DSR)
Let P be a defmite program, G = «A{,..., A a goal, C the driving clause, let g=predicate(head(C)) then
| Ai if ¢ € SUCC(predicate(A;)) and q & SUCC (predicate(Aj)) with O<j<i
DSR(G) = A\ if g= predicate(Aj) and q ¢ predicate (Aj) with O<j<i
{} otherwise .

Let us now define the DM method.

The method takes a definite program P, a clause C € P and a definite goal G. The aim is to obtain all the
correct answer substitutions for P U {G) driven by C, that is all those refutations that use the clause C, at
least once, as input clause.

The algorithm consists of the inductive construction of the following sets of goals:

"Def. 5§
: () if DSR (G) = {}
PHASET® =
{(G, ©)} otherwise

PHASE 1! = (G, ,6,,,) 1 (G, 6,) € PHASE I with G, = A ,...,Ay , with n>0 such that:
; (- DSR (G = Aj and predicate(A;) # predicate (C)
- A &Bjy,..., Bye P\{C} and Aj6 = A6 with 6 mgu. -

- 9k+l= Ok o0
- Gk+1= ol (Al,...,Aj_l, Bl,..., Bm, Aj+1,...,An)9)
or * (-DSR (Gk) = Aj and ptedicate(Aj) = predicate (C)

© Oa=b%

- Gy=GY 1}

the construction terminates when PHASE I' = {(G,, 8,) | with G, = «Aj,...,A; and it exists an A s.t
predicate (C) = predicate (Aj))

We set PHASE I = PHASE L. S

Intuitively the construction of sets PHASE i corresponds to successive deductions in a partially computed
SLD tree.. Now deduction proceeds by solving the goals in PHASE I with the driving clause C to obtain
the set PHASE II.

Def. 6)
PHASEI = {(G,,,+8,,;) | (G, 8,) e PHASE I with G, = < Ay,...,Ay , n>0
anAj such that :
- head(C)0 =Aj 0 with 6 mgu
- 8=8 08
- G, =« (Ap.Aj.1, Body(C), AjrtsnAn)0) o .

The set PHASE II exactly contains the SLD tree nodes obtained after resolving with the input clause C. In
order to obtain the complete refutations, deductions frem these nodes have to be continued.

Thus, in order to obtain all the refutations, it is enough to expand each node in PHASE II by using SLD
with the standard computation rule, leftmost, for example.

|
=)

The DM method will give as a result the set of answer substitutions computed by the SLD on the goalsin -
PHASE II, composed with the substitutions computed during PHASE 1. e

2.3 Completeness and correctness

In this section, we prove that the algorithm proposed is correct in the sense that each refutauon in our
method is an SLD refutation and it is complete in the sense that for every SLD refutation in which Ci
appears (at least once) as input clause it exists a refutation in our method which gives an identical answer '
substitution. ; ‘

Prop.2 (correctness) ‘
Let P be a definite program, G a definite goal and C input clause. Then each answer subsmunon ‘
computed with the DM method is & correct answer substitution

Proof Straightforward; each refutation in the DM is a SLD refutation. ¢

Prop.3 (completeness)
Let P be a definite program, G: é-Al, A, a definite goal, and C input clause. Then for each SLD

refutation of P\ {G) which uses C as input clause there exists an equivalent DM refutanon.

Sketch of the proof
Let G=Gyo, ...,.Gk, Gk+1, WG =[]
8o Ok, Okl en

co Ck: Ck+1 Cn
be the SLD refutation, since it uses C as input clause there must exist a literal L;in‘Gyp s.t. .

predicate(head(C)) € SUCC(predicate(L;)), the DM method would have chosen such an, L; to proceed in
the refutation. Now by the mdependence of the computation rule [th. 9.9, in Lloyd 87] the result
follows.)

¢
2.4 Normal goals: Two new computation rules

Let us now extend the approach to normal goals i.e. goals in which negative literals can occur.
Let us consider the following hypothesis: ‘
- P is modified into P' either by adding or deleting a clause; then we want to compute all the correct answer

substitutions for P' _ {G}, related to a certain clause C, inspecting an inference structure which is smaller
than the original SLDNF tree for P' U {G}.

Now in the case of normal goals we need two different driven selection rules instead of the one defined in
the case of definite goals :

Def. 7 (Driven Selection Rule, DSRp)
Let P be a definite program, G = «Ly,..., Ly, a goal, C the driving clause, let g=predicate(head(C)) then

6

(L; if L; is a positive literal: g=predicate(L;), g#predicate(Lj) and

| qe SUCC(predicate(Lj) with- 0sj<i.

DSRp(G) = ! L; if L; is a positive literal, ge SUCC (predicate(L;)), g& SUCC(predicate(Lj)) with 0<j<i.
l {) otherwise

Def. 8 (Driven Selection Rule, DSRn)
Let P be a definite proéram, G = «Lj,...,, Ly a goal, C the driving clause, let q=predicate(head(C)) then
2 j ‘L if Lj is a negative ground literale s.t. q = predicate(L;) or q € SUCC (predicate(Ly))
DSRn(G) = ; LjifL; isa positive literal s.t-it contains at least a variable that also occurs in a negative
i literal Ly s.t. q e SUCC (predicate(Ly)) or q = predicate(Lg) and O<k<i.
L {} otherwise.

In the next section we will show how to use these two computation rules to perform integrity constraint
checking. ’

3. Applying DM resolution to constraint checking

In this section we show how it is possible to use the described driven method to obtain an efficient .
integrity constraint proof procedure which is correct and complete.

Let us assume that the database D, satisfies the integrity constraint IC befcre the update. In order to show
that the IC is still satisfied,after the update, it has to be proved that the new database D' (to be precise the
completion of D', comp(D")) is consistent with IC.

Roughly speaking the idea here is to consider integrity constraints formulas that are goals, i.e. < W, then
use the DM with the update to D' as driving clause, if a finite failure is obtained then D' satisfies the
integrity constraint otherwise the update violates D',

Note that this approach to integrity constraint satisfaction has been proposed in [Sadri&Kowalski 87], and

looks for a finite failure of D \U { « W} in order to establiéh consistency. Other approaches in the
literature [Decker 86, Lloyd et al. 87, Asirelli et al. 88] use a specular notion of IC consistency preserving,
namely that the IC has to be a logical consequence of the DB. In such approaches if D' preserves

consistence, w.r.t. IC = W, then D \U (-« W} has a refutation. The two approaches are equivalent for
complete theories and when we restrict to the class of logic programs for which SLDNF is complete.

For a detailed presentation and comparison of the two approaches see [Sadri&Kowalski 87].

The idea of using the DM method consists of:
1) for updates that are insertions, select literals in «— W according to DSRp in D".
2) for updates that are deletions, select literals in <~ W according to DSRn in D',

In fact, when updates are insertions, there may be branches in the derivation tree for D' \U { « W)
involving the inserted clause C, that were not in the derivation tree for D \U { « W}, if we assume that

DU { «W] finitely fails, then D' U { « W} may have a refutation on those new branches, that have to

be checked for finite failure. On the other hand, the only literals in W that can have a refutation, depending
on C are the positive ones, and those are the literals selected by DSRp.

When the update is a deletion, then there may be failure branches in the derivation tree for D U { W}
involving the deleted clause C, those branches now may become success branches in the derivation tree for

D'\ { « W}, so they have to be checked for finite failure. On the other hand, the only literals in'W that
can now succeed, depending on the deletion of C are the negative ones, and those are the literals whose
expansion is forced by using DSRn.

Let us now define the integrity verification method, splitting it in two parts: VMDi that deals with
insertions and VMDd that deals with deletions.

Def. 9 VMDi

Let C be the inserted clause in D such that D'= D \U {C}. Let « W be the IC.

1. Compute PHASE I on D' with G= « W and driving clause C, by using DSRp(G) instead of DSR(G).
2. Compute PHASE I1. Let FINAL denote the set of SLDNE answer computed on D' \U {G} with

G € PHASE II If FINAL = {} success (D' satisfies the constraint « W), otherwise failure (D'

violates « W).

VMDi is quite immediate: since we are dealing with an insertion, we know that if the constraint is violated
after the update this can be caused, directly or indirectly, only because some positive literal contained in the
constraint now succeed. In particular, this means that it must exist a positive literal, let it B, in W such that

<Bo failed in D while in D' it has a refutation. Since all the new introduced derivations must involve the
{uipdate, what we need to do is to select all the new branches in D' that contain C as input clause checking if
a refutation exists and this is the case in which FINAL is not empty. '

Def 10 (PHASE In)

{} if DSRn (G) = {})
- PHASE In°® =
| {(G, &)} otherwise

PHASE Ini*! = (Gt 84 1 Gy 8)) € PHASET with' G, = €Ly,...L, , with n>0'such that:
(- DSRn (Gk)=Aj positive literal -
- A &By,.., B e D'and Aje = A6 with 6 mgu.

0= 6 8

Cpn=¢ (ApssAjg, By, By, Ajs1s-Ap)0)
or (- DSR (Gk) =L negative ground literal

e Tk

© G=6Y 1}

the construction terminates when given, g= predicate(head(C)) , all the negative literals L € Gk+1 s.t.
q € SUCC (predicate(L;)) or q = predicate(L) are ground.

Let PHASE In denote the last computed PHASE In**!. *

PHASE In is needed in order to guarantee that the “interesting” negative literals to be selected become
ground before selection, this corresponds to guarantee that our computation rule is safe [Lloyd 87]. Note
that since D' is a definite program the negative literal that are considered are all and only those included in
the IC.

Def. 11 VMDd _

Let C be the deleted clause in D such that D'= D\ {C}. Let « W be the IC.

1. Compute PHASE In on D' with G= ¢~ W and driving clause C. ‘

2. Let FINAL denote the set of SLDNF answers computed on D' U {G} with G € PHASE In. If FINAL

= {) success (D' satisfies the constraint « W), otherwise failure (D' violates « W).
' .

Theorem 1 (Insertion Theorem VMDi)
Let C be the inserted clause in D such that D'= D \U (C}. Let « W be the IC. Let us assume that D

satisfies IC, i.e. D \U { «W) finitely fails. Let SUCC be defined as in Sect. 2.2, and computed on D',
then D' satisfies «~W iff VMDi terminates with success.

Sketch of the proof »

— VMDi terminates with success when FINAL = {}. This happens either when PHASE II = {} or
when no refutation has been obtained from D' U {G}, Ge PHASE IL.

All we need to prove to get the result is that PHASE II contains all the possible (partial) derivations th
contain C has input clause. This is straightforward from the results on the method in the case of positive
programs and positive goals in sect. 2.

Theorem 2 (Deletion Theorem YMDd)
Let C be the deleted clause in D such that D'= D\ {C). Let <~ W be the IC. Let s assume that D satisfies

IC, i.e. D \U { «W] finitely fails. Let SUCC be defined as in Sect. 2.2, and computed on D', then D'
satisfies «W iff VMDd terminates with success.

Sketch of the proof:
VMDd terminates with success if FINAL is empty . This happens either when PHASE In = {} or when

no refutation has been obtained from D' U (G}, Ge PHASE In. All we need to prove to get the result is
that PHASE In contains all the derivations that have to be checked. Since we have a deletion only a
negative literal in IC may now be refuted, and this may cause IC violation. But PHASE In exactly contains
all the goals in which the negative literals, whose proof uses C, are ground.

s ; ¢

It is straightforward to generalize the above definitions to the case of a generic transaction consisting of
several insertions and deletions.

Examples

Example 1.

A(x,y) « D(x), C(y) SUCC(A)= {D,C,B,E}, SUCC(D)= {B,E}
D(x) < B(x) SUCC(C)=SUUCC(E)= SUCC(B)= {}

D(x) « E(x)

C(b)

IC = « A(x,y), mB(x) update = insert E(d)

DSRp (IC) = A(x,y)
PHASE I° = {« A(x,y), -B(x), €}

DSRp (< A(x,y), =B(x)) = A(x,y)
PHASE I! = (&« D(x), C(y), =B(x), €}

DSRp (¢« D(x), C(y), =B(x)) = D(x)
PHASE I = {(« B(x), C(y), ~B(x), €), («E(x), C(y), =B(x),)}

DSRp (¢« B(x), C(y), -B(x), &) = @
DSRp (« E(x), C(y), —B(x), €) = &
PHASE P = ()

PHASE I = PHASE P= {(« B(x), C(y), =B(x), €), («E(x), C(y), ~B(x), €)}
PHASE II = {&« C(y), =B(d), x/d}
« C(y), -~B(d)
| y/b
« —B(d)
|
0
FINAL = {y/b}

Thus the IC has been violated by the update.

Example 2.

A(x) « B(x), D(x) SUCC(A)= {B,D}, SUCC(C)= (F} 4
C(x) « F(x) SUCC(B)=SUCC(D)= SUCC(F)= (}

B(b)

D(b)

F(b)

IC = « = C(x), A (x) update = delete F(b)

DSRn (IC) = A(x)
PHASE I? = {((« = C(x), A (x)), €))

DSRn (&« — C(x), A (x)) = A(x)
PHASEI,! = (((~ = C(x), B(x).D(x)), €)}

DSRn (&« — C(x), B(x),D(x)) = B(x); DSRn (« — C(x), B(x),D(x)) = D(x)
PHASE I, = {((«< = C(b), D(b)), x/b), (¢~ = C(b), B(b)), x/b)}

FINAL ={ x/b}

thus the Integrity Constraint is violated.
On the contrary if, e.g., we consider update = delete D(b), at the first step DSRn (IC) = {}, thus getting
FINAL = {} and concluding that the IC is still satisfied.

5 Conclusions

In this paper we have presented a method that allows the selection of those branches of a derivation tree
that contain a specific clause as input clause. We have applied such method to integrity constraint checking
but it seems useful in other application areas as well.

Despite to its simplicity in the case of definite goals and programs, when introducing negation problems
arise. We restricted ourselves to definite programs and normal goals because in the case of integrity
checking it seems quite a general framework since constraints act as goals in our method.

Note that if one makes the assumption that all the negative literals in the goal are ground, the verification
method sensibly improves.

The presented examples serve as an explanatory framework rather than providing convincing elements
with respect to the advantages of the method. In order to get such an evidence examples that give rise to a
more complex search spaces are needed.

Much work has to be done to extend the approach to normal programs even if we foresee less advantages.

11

References

[Asirelli et al. 85] Asirelli, P., De Santis, M., Martelli, M., Integrity Constraints in Logic Data Bases,
Journal of Logic Programming, Vol. 2, n. 3, Oct. 1985.]

[Asirelli et al. 88] P. Asirelli, P. Inverardi, A. Mustaro “Improving Integrity constraint Checking in
Deductive Databases” , International Conference on Database Theory , 29 Agoust, 2 September 1988,
Bruges, Belgium, LNCS 326.

[Decker 86] Decker, H., Integrity Enforcement on Deductive Databases , /st International Conference on
Expert Database Systems, Charleston, S.C., 1986, pp. 271-285.

[Lloyd 87] Lloyd, J. W., Foundations of logic programming, Symbolic Computation Series, Springer,
1987, Second Edition.

[Lloyd et al. 87] Lloyd, J. W., Sonenberg, E.,A., Topor, R. W., Integrity Constraint Checking in
Stratified Databases, J. Logic Programming 4 (4): 331-343, 1987.

[Sadri&Kowalsky 87] Sadri, F., Kowalsky , R. A., A Theorem-Proving Approach to Database Integrity,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan Kaufman, Los
Altos, 1987.

