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Preface

OvVER the past two decades. we have witnessed a rapt 1 development
of solid-state technology with its apparently unending nroliferation
of new devices. In order to cope with this situation, a steady stream
of new theory, being general and independent of devices, has
emerged. One of the most significant developments is the
introduction of scattering techniques to network theory. The
purpose of this book is to present a unified and detailed account ot
this theory and its applications to the design of broadband matching
networks and amplifiers. It was written primarily as a late text in
network theory as well as a reference for practicing engineers who
wish to learn how the modern network theory can be applied to the
design of many practical circuits. The background required 1s the
usual undergraduate basic courses in networks as well as the ability
to handle matrices and functions of a complex variable.

Ih the book, I have attempted to extract the essence of the theory
and to present those topics that are of fundamental importance and
that will transcend the advent of new. devices and design tools. The
guiding light throughout the book has been matHematical precision.
Thus, all the assertions are rigorously proved; many of these proof
are believed to be new and novel. I have tried to give a balancec
treatment between the mathematical aspects and the physical
postulates which motivate the work, and to present the materia. in a
concise manner. using discussions and examples to illustrate the
concepts and principles invalved. The book also contains some of
the personal contributions of the author that are not available
elsewhere in the literature.

The scope of this book should be quite clear from a glance at the
table of contents. Chapter | introduces many fundamental concepts
related to linear, time-invariant n-port networks, defines passivity in
terms of the universally pntountered physical quantities time and
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energy, and reviews briefly the general characterizations of an
n-port network. Its time-domain passivity conditions are then
translated into the equivalent frequency-domain passivity criteria,
which are to be employed to obtain the fundamental limitations on
its behavior and utility. Thus, this chapter, as the title implies, may
be taken as the foundation for any subsequent network study as well
as for the material treated in the remainder of the book.

Chapter 2 gives a fairly complete exposition of the scattering
matrix associated with an n-port network, starting from a one-port
network and using the concepts from transmission-line theory.
Fundamental properties of the scattering matrix and its relation to
the power transmission among the ports are then derived. The
results are indispensable in developing the theory of broadband
matching to be treated in the last two chapters.

In seeking fundamental limitations on network or device behav-
ior, performance criteria are often overly idealistic and are not
physically realizable. To avoid this difficulty, Chapter 3 considers
the approximation problem along with a discussion of ‘the
approximating functions. It is shown that the ideal low-pass
brick-wall type of gain response can be approximated by three
popular rational function approximation schemes: the maximally-
flat (Butterworth) response, the equiripple (Chebyshev) response,
and the elliptic (Cauer-parameter) response. This is followed by
presenting the corresponding ladder network realizations which are
~ attractive from an engineering viewpoint in that they are unbalanced
and contain no coupling coils. Explicit formulas for element values
of these ladder networks with Butterworth or Chebyshev gain
characteristic are given, which reduce the design of these networks
to simple arithmetic. Confining attention to the low-pass gain
characteristic is not to be deemed restrictive as it may appear. This
is demonstrated by considering frequency transformations that
permit low-pass characteristic to be converted to a high-pass,
band-pass, or band-elimination characteristic.

Using the results developed in the first three chapters, Chapter 4
treatsr Youla’s theory of broadband matching in detail, illustrating
every phase of the theory with fully worked out examples. In
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particular, the fundamental gain-bandwidth limitations for Bode’s
parallel RC load and Darlington’s type-C load are established in their
full generality. The extension of Youla’s theory to active load
impedance is taken up in Chapter 5. It is demonstrated that with
suitable manipulations of the scattering parameters, the theory can
be applied to the design of negative-resistance amplifiers. This is
especially significant in view of the continuing development of new
one-port active devices such as the tunnel diode. Many readers will
find the perusal of this chapter to be a gratifying and stimulating
experience.

In selecting the level of presentation, considerable attention has
been given to the fact that many readers may be encountering these
topics for the first time. Thus basic introductory material has been
included. For example, since many readers are not familiar with the
subject of elliptic functions, in Chapter 3 on Approximation and
Ladder Realization, an entire section is devoted to the discussion of
elliptic functions and some of their fundamental properties that are
needed in subsequent analysis. In fact, the section on elliptic
response has never been so concisely and systematically treated
elsewhere.

The text has grown out of a graduate course entitled “‘Linear
Network Theory” organized at Ohio University. Over the period of
years, the material has naturally evolved and up-dated into a shape
quite different from the original. However, the basic objective of
establishing the fundamentals in this area has remained unchanged
throughout. There is little difficulty in fitting the book into a
one-semester, or two-quarter course in linear network theory and
design. It can be used equally well as a text in advanced network
synthesis. For example, as an advanced text in modern network
synthesis, Chapters.2, 4 and 5 plus some sections of Chapter 3 would
serve for this purpose. Some of the later chapters are also suitable as
topics for advanced seminars.

A special feature of the book is that results of direct practical
value are included. They are design curves and tables for networks
having Butterworth, Chebyshev or elliptic response. These results
are extremely useful in that many of the design procedures may be
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reduced to simple arithmetic and that they find great use in the
conduct of research. For example, it is often necessary to check
one’s hypothesis by specific examples; here they are ready at hand.

A variety of problems has been given at the end of each chapter,
some of which are routine applications of results derived in the text.
Others, however, require considerable extension of the text
material. In all, there are 271 problems.

Much of the material in the book was developed from my research
during the past few years. It is a pleasure to acknowledge publicly
the research support of the Ohio University Baker Fund Awards
Committee. Thanks are also due to many friends and colleagues who
reviewed various portions of my manuscript and gave useful
suggestions: among them are Professor M. E. Van Valkenburg of
University of Illinois, Professor L. O. Chua of University of
California at Berkeley, Professor S. P. Chan of University of Santa
Clara, and Professor B. J. Leon of Purdue University. I am also
indebted to many graduate students who have made valuable
contributions to the improvement of this book. Special thanks are
due to Mr. S. W. Leung who plotted some of the gain curves in
Chapter 4, and to my doctoral students Dr. S. Chandra who gave the
complete book a careful reading and Major T. Chaisrakeo who
assisted me in computing the elliptic response as well as in many other
ways. Finally, I wish to thank my wife and children for their patience
and understanding to whom this book is dedicated.

Athens, Ohio Wai-Ka1r CHEN
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CHAPTER 1

Foundations of Network Theory

AN electrical network is a structure composed of a finite number of
interconnected elements with a set of ports or accessible terminal
pairs at which voltages and currents may be measured and the
transfer of electromagnetic energy into or out of the structure can be
made. The elements are idealizations of actual physical devices such
as resistors, capacitors, inductors, transformers and generators; and
obey the established laws of physics relating various physical
quantities such as current, voltage and so forth. Fundamental to the
concept of a port is the assumption that the instantaneous current
entering one terminal of the port is always equal to the
instantaneous current leaving the other terminal of the port. A
network with n such accessible ports is called an n-port network or
simply an n-port, as depicted in Fig. 1.1. In ‘this chapter, we
introduce many fundamental concepts related to linear, time-
invariant n-port networks. We first define passivity in terms of the
universally encountered physical quantities time and energy and
review the general characterizations of an n-port network. We then
translate the time-domain passivity conditions into the equivalent
frequency-domain passivity criteria, which are to be employed to
obtain the fundamental limitations on its behavior and utility.

Since in this book we deal exclusively with linear, lumped and
time-invariant n-port networks, the adjectives “‘linear”, “lumped”
and ““time-invariant” are to be omitted in the discussion unless they
are used for emphasis. Much of the discussion and results obtained
in the first two chapters are sufficiently general to be applicable to
general linear systems.
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FIG. 1.1. The general symbolic representation of an n-port network N.

1. Basic network postulates

From the historical evolution of network theory, the physical
nature of a network can best be described by a set of postulates,
which make the theory as simple and as powerful as possible.

Referring to the general symbolic representation of an n-port
network N of Fig. 1.1, in which the port voltages v, (t) and currents
i.(t) can be conveniently represented by the port-voltage and
port-current vectors,

v(t) =[v:(2), vA2), ..., va ()], (1.1a)
i(t) =[i,(1), iAt), ..., ()], (1.1b)

respectively, where the prime denotes the matrix transpose. We say
that the two n-vectors »(t) and i(t) constitute an admissible signal
pair, written as [v(t),i(t)], for the n-port network N. We shall
generally be concerned with n-port networks that satisfy the
following constraints on o(f) and i(t).
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1.1. Real-time function postulate

It simply states that if the excitation signals of an n-port are real
functions of time, the response signals must also be real functions of
time.

Although there is certainly no such thing as a nonreal signal in the
real, physical world, it is important to bear in mind that in network
theory we often work with signals that are functions of a complex
wariable, since the use of these signals has become a convenient
artifice in the study of networks. For example, in the steady-state
analysis of a one-port whose impedance is z(s), it is customary to
employ a voltage excitation V(jw). Then according to the postulate,
if the voltage signal has the form

v(t) =Re V(jw)e™ =|V(jw)|cos (wt + 0), (1.2)
where V(jw)=|V(jw)|e” and Re means the real part of, the

response current signal must also be a real function of time. In fact,
following the usual conventions, the steady-state current is given by

i =Re | Se |- 15

(] ) cos (wt + 6 — @), (1.3)

where z(jo) = |z(jw)|e”.

We remark that the complex variable s = o + jw is often referred
to as the complex frequency. With this designation, if we refer
simply to frequency, it is not clear whether we mean s or . To
emphasize the distinction, people often say real frequency to mean
o, which is the imaginary part of s. The real part o of s, misleading
as it may be, is called the imaginary frequency, and was in general
use before 1930. Another convention is to name w radian frequency
and o neper frequency, thus avoiding the near metaphysical names.
But, no matter what we call them, the two components of frequency
add together to give complex frequency. For the present, we shall
use the term real frequency for . When we speak of the
real-frequency axis, we mean the jw-axis of the complex frequency
plane.
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1.2. Time-invariance postulate

Intuitively, an n-port network N is considered time-invariant if a
given excitation produces the same response no matter when it is
apphed. Formally, we say that an n-port N is time-invariant if for
every admissible signal pair [v.(2).i,(1)] and for every real finite
constant 7. there is an admissible signal pair [o.(1). i.(1)] such that

vi(t)=wov.(t +71), (1.4a)

i) = i1 + 7)., (1.4b)

An n-port that is not time-invariant is called time-varying. In other
words, an n-port is time-invariant if its terminzl behavior is invariant
to ashift in the time origin. Thus. if the parameters of an n-port,
which is devoid of any initial conditions. are constant then the n-port
is time-invariant. The converse, however, is not necessarily true. It
IS quite easy to conceive of an n-port with time-varying physical
elements which exhibits a port behavior that is time-invarjant.
Figure 1.2 shows a one-port composed of a series connection of

I-sin t
-
S S AONVAAA——
<4
<
>sint
‘()

FiG. 1.2. A one-port network with time-varying physical elements
which exhibits a port behavior that is time-invariant.

two time-varying resistors, whose input impedance is one ohm.
According to the above definition, this cne-port is considered to be
time-invariant. Suppose, however, that another two-port is formed
from this one-port, as shown in Fig. 1.3. This new two-port becomes
time-varying. Also, in general, n-ports with initial stored energies
that affect port behavior must be considered to be time-varying from
the port behavior standpoint.



FOUNDATIONS OF NETWORK THEORY 5

I-sin t
AR

sin t

FI1G. 1.3. A time-varying two-port network.

1.3. Linearity postulate

Generally speaking, a linear n-port is one in which the response is
proportional to the excitation. More precisely, an n-port is said to be
linear if for all admissible signal pairs

fo(t),i,(t)] and [ov.(t), ix(t)] (1.5a)
and for all real finite constants ¢, and c., then
[civ() + cava(t), €1i(t) + caia(t)] (1.5b)

is an admissible signal pair. In other words, a linear n-port obeys the
principle of superposition, and its admissible signal pairs comprise a
linear space. Quite often, an n-port is called nonlinear if it is not
linear. However, we must bear in mind that almost all nonlinear
analysis techniques include linear case in their domain of
applicability as well. Thus, care must be taken to assure the proper
interpretation of the term “‘nonlinear”.

Consider the one-port of Fig. 1.4, in which the capacitor is initially

it) i Q
NNV

+

ZFTVJ')

F1G. 1.4. A nonlinear one-port network in which the capacitor is
initially charged to a voltage V,#0.




