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Preface

The first formal development of group theory, centering around the ideas of
Galois, was limited almost entirely to finite groups. The idea of an abstract infinite
group is clearly embodied in the work of Cayley on the axioms for a group, but
was not immediately pursued to any depth. There developed later a school of group
theory, in which Schmidt was prominent, that was concerned in part with develop-
ing for infinite groups results parallel to those known for finite groups. Another
strong influence on the development of group theory was the recognition, notably
by Klein, of the role of groups, many of them infinite, in geometry, as well as the
development of continuous groups initiated by Lie. A major stimulus to the study
of infinite discontinuous groups was the development of topology: we mention
particularly the work of Poincaré, Dehn, and Nielsen. This last influence is espe-
cially important in the present context since it led naturally to the study of groups
presented by generators and relations.

Recent years have seen a steady increase of interest in infinite discontinuous
groups, both in the systematic development of the abstract theory and in applica-
tions to other areas. The connections with topology have continued to grow.
Since Novikov and Boone exhibited groups with unsolvable word problem, results
in logic and decision problems have had a great influence on the subject of infinite
groups, and through this connection on topology.

Important contributions to the development of the ideas initiated by Dehn
were made by Magnus, who has in turn been one of the strongest influences on
contemporary research. The book Combinatorial Group Theory, by Magnus,
Karrass, and Solitar, which appeared in 1966 and immediately became the classic
-in its field, was dedicated to Dehn. It is our admiration for that work which has
prompted us to give this book the same title. We hope that our intention has been
realized of taking a further step towards a systematic and comprehensive exposition
and survey of the subject.

We view the area of combinatorial group theory as adequately delineated by
the book of Magnus, Karrass, and Solitar. It is not necessary for us to list here the
topics we discuss, which can be seen from the table of contents. However, we
would like to note that there are two broad methods running through our treat-
ment. The first is the ‘linear’ cancellation method of Nielsen, which plays an
important role in Chapters I and IV this is concerned with the formal expression
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of an element of a group in terms of a given s2t of generators for the group. The
second is the more geomeztric method, initiated by Poincaré and Dzhn, which
includes’ many of the more recent developmants in ‘small cancellation theory’;
this method, which plays a role in Chapters 11, I11, and especially V, conczrns the
formal expression of an element of a normal subgroup N of a group G in terms of
conjugates of a given set of elements whose normai closure in G is N.

We have put considerable emphasis on connections with topology, on argu-
ments of a primitive geometric nature, and on connections with logic. In our pre-
sentation we have tried to combine a fairly self-contained exposition at a modest
level with a reasonably adequate source of reference on the topics discussed. This,
together with the fact that the individual chapters were written separately by the
two authors, although in close collaboration, has led to considerable variation
of style, which we have nonetheless sought to adapt to the subject matter.

While we do not feel it necessary to defend our inclusions, we do feel some need
to justify our omissions. There are, of course, many important branches of group
theory, for example, most of the theory of finite groups, that no one would claim
as part of combinatorial group theory. A borderline area, with which we have
made no attempt to deal here, is that of infinite groups subject to some kind of
finiteness condition. Beyond these there remain a number of important topics that
we believe do belong to combinatorial group theory, but which we have mentioned
only briefly if at all, on the grounds that we could not hope to improve on existing
excellent treatments of these topics. We list some of these topics.

1. Commutator calculus and Lie theory. An exc:llent treatment is given in
Chapter 5 of the book of Magnus, Karrass, Solitar (1966). The ‘Alberta notes’ of
Philip Hall have been republished in 1970.

2. Varieties of groups. The definitive work here is the book of H. Neumann
(1967).

3. Linear groups. Treatments germaine to our topic are given by Dixon (1973)
and by Wehrfritz (1973).

4. Groups acting on trees. This powerful method of Bass and Serre is central
to our topic. An account of this theory is contained in the widely circulated notes
of Serre (1968/1969), which are intended to appear in the Springer Lecture Notes
series.

5. Ends of groups. The development of this subject by Stallings (1968, 1968,
1970, 1971) and Swan (1969) is also central to our subject; a lucid and com-
prehensive account, from a somewhat different point of view, is given in the book
of Cohen (1972). )

6. Cohomology theory. Of a number of excellent sources, the book of
Gruenberg (1970) seems nearest to the spirit of our discussion.

We wish also to draw attention to a few other books that are especially relevant
to our topic. For a history of group theory up to.the early part of this century we
refer to Wussing (1960). The book of Kurosh, in its various editions and transla-
tions, remains, along with the book of Magnus, Karrass, and Solitar, the classic
source for information on infinite groups. The book of Coxeter and Moser (1965)
contains, among other things, presentations for a large number of groups, mainly
of geometric origin. We have borrowed much from the book of Zieschang, Vogt,
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and Coldewey (1970). On the subject of Fuchsian groups from a combinatorial
point of view we recommend, in addition to the work just cited, the Dundee notes
of Macbeath (1961) and the book of Magnus (1974). For an elementary exposition
of the basic connections between topology and group theory we refer to Massey
(1967). For a thorough discussion of decision problems in group theory we refer
to Miller (1971).
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Notation

We have tried to use only standard notation, and list below only a few usages that
might offer difficulty.

Set theory

& is the empty set.

X — Y is set difference, where Y is contained in X.

X + Yis union, where X and Y are disjoint.

{xy, ..., x,} is the unordered n-tuple, (x,, . . ., x,) the ordered n-tuple; when there
is no ambiguity we write x,, . . .. x, for either. »

X < Yor X ¢ Ydenotes inclusion, nreper or not; X & Y denotes strict inclusion.

|X| denotes the cardinal of the set X" (except in special contexts).

General

N, Z, Q, R, C denote the (non negative) natural numbers, the integers, the ra-
tionals, the reals, the complex numbers.

GL(n, K), SL(n, K), PL(n, K), PSL(n, K) denote the ger.eral, special, projective,
and projective special linear group of degree n over the ring K.

Group theory

I denotes the trivial group, Z(or C) the infinite cyclic group, Z,(or C,) the cyclic
group of order n.

{U) or Gp(U) denotes the subgroup of G generated by the subset U, and according
to context, the free group with basis U.

{X; Ry, (X; R), {xyy...,X%n;Fy,...,0,,as well as several other variahts, denote
the presentation with generaters x € X and relators r € R, or the group so pre-
sented. '

H < G or H < G means that H is a subgroup of G.

H < G means that H is a normal subgroup of G.

|G| is the order of G (finite or infinite), except in special contexts.
|G: H| is the index of H in G.
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|w|, for w an element of a free group with basis X, is the length of w as a reduced
word relative to the basis X.

[h, k]=h" 'k~ 'hk (occasionally, where indicated, hkh~'k~1!).

[H. K] is the subgroup generated by all [, k] for he H, k € K.

Cs(H), Ng(U) are the centralizer and normalizer in G of the subset U.

G, or Stabg(p) is the stabilizer of p under action of G.

Aut G is the automorphism group of G.

G x H is the direct product.

G * H, x{G;: ie I}, or xG; denotes the free product.

G * H denotes the free product of G and H with 4 = G n H amalgamated;
A

(G, H; A = B, ¢) denotes the free product of (disjoint) groups G and H with
their subgroup 4 and B amalgamated according to the isomorphism ¢: 4 — B.
(G, t;t" ' at = ¢(a), ae A) denotes the indicated HNN extension of G. ’
Transformations that occur as elements of groups will ordinarily be written on the
right: x — xT; other functions will occasionally be written on the left, e.g.,
x(G) for the characteristic function of a group G.

Note on Format

The notation (1.2.3) refers to Proposition 2.3 of Chapter I (to be found in section
2). Similarly, (I.2) refers to that section, and (I) to Chapter I.

A date accompanying a name, e.g., Smith, 1970, refers to a paper or book
listed in the bibliography.

A proof begins and ends with the mark [J. This mark immediately following
the statement of a proposition means that no (further) proof will be given.
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Chapter 1. Free Groups and Their Subgroups

1. Introduction

Informally, a group is free on a set of generators if no relation holds among these
generators except the trivial relations that hold among any set of elements in any
group. We make this precise as follows.

Definition. Let X be a subset of a group F. Then F is a free group with basis X
provided the following holds: if ¢ is any function from the set X into a group H,
then there exists a unique extension of ¢ to a homomorphism ¢* from Finto H.

We remark that the requirement that the extension be unique is equivalent to
requiring that X generate F.

Proposition 1.1. Let F, and F, be free groups with bases X, and X,. Then F, and
F, are isomorphic if and only if X, and X, have the same cardinal.

O Suppose that f; is a one-to-one correspondence mapping X, onto X,, and let
f2 =fi'. The maps f, and f, determine maps ¢,: X, = F, and ¢,: X, - F,.
These have extensions to homomorphisms ¢%: F, — F, and ¢3: F, - F,. Now
¢31¢3%: F, = F, acts as the identity f, f, = iy, on X,, and hence is an extension of
the inclusion map X, — F,. Since the identity i : F;, — F, also extends this in-
clusion map, by uniqueness we have ¢1¢3 = ir,. Similarly; ¢3¢T = if,. It follows
that ¢7 is an isomorphism from F, onto F,.

It remains to show that F determines | X|. The subgroup N of F generated by all
squares of elements in F is normal, and F/N is an elementary abelian 2-group of
rank |X|. (If X is finite, |F/N| = 2'*!, finite; if | X| is infinite, |F/N| = |X|). O

Corollary 1.2. ' All bases for a given free group F have the same cardinal, the rank
of F. O

We remark that a free group of rank 0 is trivial.
Proposition 1.3. If a group is generated by a set of n of its elements (n finite or
infinite), then it is a quotient group of a free group of rank n.

O Weassume now the existence of a free group with an arbitrary given set as basis;
this will be proved below (1.7). Let G be generated by the set S = G, |S| = n,
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let fbe a one-to-one correspondence from a set X onto S, and let F be free with X as
basis. Then fdetermines a map ¢: X -% G, which extends to a homomorphism ¢*:
F — G. Since the image S of X generates G, ¢* maps Fonto G. [

The class of free groups can be characterized without reference to bases. This
results from the circumstance that, in the category of groups, projective objects are
free.

Definition. A group P is projective provided the following holds: if G and H are
any groups and if y is a map from G onto H and n a map from P into H, then
there exists a map ¢ from P into G such that ¢y = 7.

Definition. A map p from a group G onto a subgroup S is a retraction, and S is
a retract of G, provided thet p? = p, or, equivalently, that the restriction of p to S
is the identity on S.

Proposition 1.4. The projective groups are precisely the retracts of free groups.

[0 Let P be projective. In the definition, take H = P with n = ip, the identity on P,
and, by (1,3), let G be free with y from G onto P. By the definition of projectivity,
there exists ¢:P — G with ¢y = ip. Let R = P¢ < G, and let p = y¢. Then Gp =
Gyp = P = R,and p? = ypyd = yip¢p = yd = p. Thus p is a retraction and R is
a retract of G. Since P¢ = R and ¢y = ip, it follows that ¢ is an isomorphism from
P onto R. Since R is a retract of a free group, sois P. [J

We remark that although the subgroup of a free group generated by part of a
basis is obviously a retract, not every retract of a free group is of this sort; for a
counterexample see Magnus, Karrass, and Solitar, p. 140.

For the following we assume, (2.11) below, that every subgroup of a free group
is free.

Corollary 1.5. The projective groups are precisely the free groups. []

We turn now to the existence of free groups. This follows from principles of
universal algebra (see Cohn 1965), but we prefer an explicit construction. Let a set
X be given; in anticipation we call the elements of X generators. Let Y be a set dis-
joint from X with a one-to-one correspondence n:X — Y. If xe X and xn = y we
write also yn = x (thus n becomes an involution on the set X U Y). We write
y = x 'and x = y ', and we call x and y inverse to each other. We write ¥ = X ™!

and Y*! = X U X~ !. The elements of X*! are letters.
A word is a finite sequence of letters, w = (a,, ..., a,), n > 0, all g, X*' If
n = 0, then w = 1, the empty word. The set W = W(X) of all words is a semigroup

under juxtaposition (in fact, it is the free (unital) semigroup with basis X *'). With
harmless ambiguity we write a; for the one-letter word (a;); this permits us to write

w=a,. .a, aproduct of one-letter words. We extend the involution n to W by
defining wn = w™! = a;'...a;'. Then n is an involutory antiautomorphism:
() ' =ov w17 =1,

_ We define the length |w| of w = a, . . . a,to be |w| = n. Clearly |uv| = |u| + |0,
[I] = 0. -

An elementary transformation of a word w consists of inserting or deleting a
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part of the form aa™!, ae X*'. Two words w, and w, are equivalent, w, ~ w,, if
there is a chain of elementary transformations leading from w, to w,. This is obvi-
ously an equivalence relation on the set W; moreover, it preserves the structure of
W as unital semigroup with involutory antiautomorphism: u; ~ u, and v; ~ v,
implies that u, v, ~ wu,v,, and u; ~ u, implies that u; ' ~ u3;'. Thus we may pass
to the quotient semigroup F = W/~ which is evidently a group. We shall see that
‘it is a free group with basis the images of the x € X.

A word w is reduced if it contains no part aa™', ae X*'. Let W, be the set of
reduced werds. We shall show that each equivalence class of words contains exactly
one reduced word. It is clear that each equivalence class contains a reduced word,
since successive deletion of parts az™' from any word w must lead to a reduced
word. It wil! suffice then to show that distinct reduced words v and v are not equiva-
lent. We suppose then thatu = w,, w,, ..., w, = visachain from u to v, with each
wi, an elementary transform of w; (I </ < n), and, indeed, with N = Yiwla
minimum. Since v # v and u and v are reduced, we have n > 1, |w,| > |w,|, and
W, 1| > |w,|. It follows that for some i(1 < i < n), |w;| > |w;_,|. |w;4,|. Now
w;_, is obtained from w; by deletion of a part aa~! and w,, , by deletion of a part
bb~'. If these two parts coincide, then w,_, = w,, ,, contrary to the minimality of
* N. If these two parts overlap without coinciding, then w, has a part aa 'a, and
w;_, and w;,, are both obtained by replacing this part by a, hence again w;,_, =
w;+ . In the remaining case, where the two parts are disjoint, we may replace w; by
the result w’ of deleting both parts to obtain a new chain with N' = N — 4, con-
trary to the minimality of N.

There is an alternative proof of the above, due to van der Waerden (1945; see
also Artin 1947). For each x € X define a permutation x4 of W, by setting w(x4) =
wx if wx is reduced and w(x4) = uif w = ux~"'. Let IT be the group of permuta-
tions of W, generated by the x4, x € X. Let 4* be the multiplicative extension of 4
to a map 4*:W — II. If u, ~ u,, then u, 4% = u,4%; moreover 1(ud*) = u, is
reduced with uy ~ w. It follows that if v, ~ u, with u,, u, reduced, then u; = u,.
We note that 4* induces an isomorphism of F = W/~ with I1.

Proposition 1.6. F is a free group with basis the set [X] of equivalence classes of
elements from X, and |[X]| = |X]|.
hi

O Let H beany group, and let ¢ map the set [X] of equivalence classes [x] of ele-
ments x € X into H. To show that |[X]| = | X[, we observe that if x,, x, € X and
X, # x,, then [x,] # [x,], since the two one-letter words x, and x, are reduced.
Then ¢ determines a map ¢, = X - H with [x]¢p = x¢,. Define an extension
¢* of ¢, from W into H by setting wop* = (x5' ... x"@T = (x1¢,)" . .. (x,0,),
x;€ X,e; = +1.1f w, and w, are equivalent, then w,¢¥ = w,¢?, whence ¢T maps
equivalent words onto the same element of H, thereby inducing a map ¢*:F - H
that is clearly a homomorphism and an extension of ¢. [

Corollary 1.7. If X is any set, there exists a free group F with X as basis. [

Proposition 1.8. Let ¢ be a homomorphism from a group G onto a free group F
with basis X, and let ¢ map a subset S of G one-to-one onto X. Then the subgroup
Gp(S) of G generated by S is free with S as basis.
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[0 Let y:X — G be the inverse of the restriction of ¢ to S. Then { extends to a
homomorphism y*:F — ‘G with image Gp(S). Since y*¢ acts as the identity on X,
it is the identity of F, whence /* is one-to-one and so an isomorphism from F onto
Gp(S) carrying X onto S. [

Proposition 1.9. Let X be a subset of a group G such that X n X' = . Then
X is a basis for a free subgroup of G if and only if no product w = x, . . . x, is trivial,
where n > 1, x;e X*', and all x;x;,, # 1.

(O Suppose first that some such w = 1. Let ¢ map X injectively into a basis Y for a
free group F. Since (x,;¢) = ... (x,¢) # 1 in F, ¢ cannot be extended to a homo-
morphism from Gp(X) into F. It follows that X is not a basis for Gp(X).

Suppose now that no such w = 1. Let F be a free group with a basis Y in one-to-
one correspondence with X under ¢:Y — X. Let ¢* be the unique extension of ¢ to
a homomorphism ¢*:F — G. If u is any non-trivial reduced word in F, then, by our
hypothesis, w = u¢* # |; thus ¢* is a monomorphism. Since Y¢* = X, Fop* =
Gp(X), and ¢* is an isomorphism from F onto Gp(X) carrying Y onto X. Since F'is
free with basis Y, it follows that Gp(X) is free with basis X. [

In a free group F with given basis X, the words serve as names for the elements
of F in much the same way as matrices serve as names for linear transformations.
Thus, if w is a word, one often speaks of the group element w; this ambiguity must
always be resolved from the context. For economy in what follows, when we speak
of a free group F it will be understood that X is a basis for F, and in contrast to the
usage above, the notation |w| will always refer henceforth to the length of (the
reduced word for) w with respect to the basis X.

If v and v are elements of F one has always |uv| < |u| + |v|; in fact, supposing
u and v reduced one has for certain u,, v,; and z that u = u,z, v = z7'p,, and
uv = u,v, reduced. One says the parts zand z~ ! have cancelled. It is the study of the
possibilities for such cancellation in forming the product of two or more words that
underlies the method of Nielsen, to which we now turn.

2. Nielsen’s Method

The main tool in the theory of free groups, and certain related groups, is cancella-
tion theory. Let F be a free group with basis X. The words w over X then serve as
names for the elements of F; in contrast to the usage above, the notation |w| will
denoté henceforth the length of the reduced word equivalent to w. We say w =
u, ... u, reduced to mean that not only does the equation w = u, . . . u, hold in F,
but also that lw| = |u,| + --- + |u,|; we say also that the equation holds without
cancellation (on the right side). In general, given u, and u, in F, there exist unique
a,.a,,and bsuch thatu, = a,b™", u, = ba,, u,u, = a,a,, all reduced, and we say
that the parts b~ ' of u, and b of u, have cancelled. Note that |u,u,| = |u,| + |uy] —
—2|b| < |u,| + |uy|. For a product of more than two elements the situation can
naturally be considerably more complicated. The method of Nielsen rests upon
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showing that certain reasonable hypotheses limit the possibilities for such cancella-
tion: in particular, /ocal hypotheses on the amount of cancellation in a product of -
two or three factors lead to global conclusions on the amount of cancellation in a
product of arbitrarily many factors.

Cancellation arguments of this sort were first applied by Nielsen to prove the
Subgroup Theorem; this is very roughly related to the problem, given a subset U of
the free group F, of characterizing the elements w of the subgroup Gp(U) generated
by U. An equally important problem is that of characterizing the elements of the
normal closure of U in F. Nielsen’s arguments could well be called /inear in that
they deal essentially with linear arrays of symbols and transformations of them. In
contrast, the second problem leads naturally to the consideration of 2-dimensional
configurations, and what may be called geometric cancellation theory. We deal here
only with the /inear theory; the geometric theory will be discussed in Chapters I[II
and V.

Nielsen first proved in 1921 by the present methods that every finitely generated
subgroup of a free group is itself a free group; this is the Nielsen Subgroup Theo-
rem. Schreier (see 3.8) using somewhat different methods proved the same conclu-
sion without the hypothesis that the subgroup be finitely generated; this is the
Nielsen-Schreier Subgroup Theorem. This more general result can also be obtained
by an extension of Nielsen’s method (see 2.9 below). However, the conceptually
simplest proofs of these results are of a primitive topological nature (see I11.3.3
below). We give a version of Nielsen’s proof of his Subgroup Theorem here partly
because of its elementary nature, partly because of its close analogy with a familiar
argument from linear algebra, but mainly to introduce the method with a view to
its many further important applications.

In considering subsets of a group G it is often technically convenient to think of
them as well ordered, that is to think of them as vectors U = (u,, u,, . . .), finite or
infinite. However we shall not hesitate to use the same symbol U for the correspond-
ing unordered set, and indeed in many contexts we shall find it natural to deal
rather with the set U** consisting of all ¥ and u~*! for u in U.

We define three types of transformation on a vector U = (u,, u,,...), as
follows:

(T1)  replace some u; by u;!;
(T2) replace some u; by uu; where j # i;
(T3) delete some u; where u; = 1.

In all three cases it is understood that the u, for A s i remain unchanged. These are
the elementary Nielsen transformations; a product of such transformations is a
Nielsen transformation, regular if there is no factor of type (T3), and otherwise
singular.

It is easy to see that each transformation of type (T1) or (T2) has an inverse
which is a regular Nielsen transformation, whence the regular Nielsen transforma-
tions form a group. It is easy to see that this group contains every permutation fix-
ing all but finitely many of the u;, and also that it contains every transformation
carrying u; into one of wu;, uu; ', uu;, uj 'u;, where j # i (and fixing all u, for
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h # i). We sometimes extend the nomenclature by counting these among the regular
elementary Nielsen transformations.

Proposition 2.1. If U is carried into V by a Nielsen transformation, then Gp(U)
= Gp(V).
[0 Thisis obvious for an elementary Nielsen transformation, and hence follows
by induction. [J

We now consider U = (u,, u,, . . .) where each u; is in F, a free group with basis
X. As usual, |w| denotes the length of the reduced word over X representing w. We
consider elements v,, v,, vy of the form u*', and call U N-reduced if for all such
triples the following conditions hold:

(NO) o # I

(N1) vy, # 1 implies |v,0,] = |v], |v,];

(N2) v,v, # 1 and v,05 # 1| implies |v,v,05] > |v,| — |v;] + |vs).

Proposition 2.2. If U = (uy, ..., u,) is finite, then U can be carried by a Nielsen

transformation into some V such that V' is N-reduced.

[0 Suppose first that U does not satisfy (N1). Then, perhaps after a permutation of
U*', some |uu;| < |u;|, where uu; # 1. Since it is easy to see that [u?| < |u] is
impossible in a free group, we have j # i. But now a transformation (T2) replacing
u; by uu; diminishes the sum Y |u;|. By induction we can suppose this sum reduced
to its minimum, and hence that U satisfies (N1). After transformations (T3) we may
suppose that U satisfies also (NO).

We now consider a triple v, = x, v, = y, v; = zsuch that xy # | and yz # I.
By (N1) |xy| = |x| and |yz| > z, whence the part of y that cancels in the product xy
is no more than half of y, and likewise the part that cancels in the product yz. We
thus have x = ap™', y = pbg™"', z = qc, all reduced, such that xy = abg~"' and
yz = pbe, both reduced. If b # 1, it follows that xyz = abc reduced, whence
|xyz| = |x| — |y| + |z| + |b] > |x] — |y| + |z|, and (N2) holds for this triple.
Suppose now that 4 = 1, that is, that x = ap™~ !, y = pg ', z = gc, where (N2) is
indeed violated. Note that we have [p| = |g] < 4|x|, 4|z|, and p # ¢.

In this case we have the option, by transformations of type (T2) that do not
alter ¥|u,|, to replace x™' = pa™' by (xy)™' = ga~', or to replace z = gc by yz =
pc. To avoid the situation described above we need only exercise a preference for
words whose left hand halves begin with one of p or g over those beginning with the
other. Technically, we suppose the set X U X' of letters well-ordered. This

induces a lexicographical well-ordering # < v on the reduced words in F. We define
. + 1 .
the left half of a word w to be the initial segment L(w) of length [IWI > :I Finally

we define a well-ordering of the pairs {w, w ™'} as follows: {w,, w; '} < {w,, w; '}
if and only if either min {L(w,), L(w; ')} < min {L(w,), L(w; ")} or else these two
minima are equal and max {L(w,), L(w; ')} < max {L(w,), L(w;")}. We shall
write simply w, < w, if {w,, w{® < {w,, w;'}. Now suppose that x = ap™',
y = pq~',and z = gc as above. #f p < ¢ (lexicographically) then yz = pc < z =



